Structure and Thermophysical Properties of Molten BaGe Using Electrostatic Levitation Technique

  • Akiko Ishikura
  • Akitoshi Mizuno
  • Masahito Watanabe
  • Tadahiko Masaki
  • Takehiko Ishikawa
  • Shinichi Yoda


BaGe alloys with two compositions near their eutectic point form open framework structures called the clathrate structure. These BaGe compounds with the clathrate structure can be made by rapid solidification from their liquid state. However, the formation mechanism of the clathrate structure has not been clarified due to lack of information on their liquid-state structure and properties. Since BaGe alloy melts have very high reactivity, it is difficult to measure the thermophysical properties of them by ordinary methods using a container. Therefore, a containerless technique must be used to measure the thermophysical properties of BaGe melts. Using the electrostatic levitation (ESL) technique as a containerless technique, the thermophysical properties (density, surface tension, and viscosity) of BaGe melts around the eutectic composition were measured in order to clarify the formation mechanism of the clathrate structure, and also the structure of them was observed by using the high-energy X-ray diffraction method combined with ESL. From experimental results, it was observed that the short-range order based on the clathrate structure exists even in the liquid state at the clathrate-forming compositions.


BaGe compound Clathrate Density Electrostatic levitation Surface tension Viscosity 


  1. 1.
    Carrillo-Cabrera W., Curda J., Peters K., Paschen S., Baenitz M., Grin Y., von Schenering H.G., Kristallogr Z.: -New Cryst. Struct. 215, 321 (2000)Google Scholar
  2. 2.
    Carrillo-Cabrera W., Curda J., von Schnering H.G., Paschen S., Grin Y., Kristallogr Z.: -New Cryst. Struct. 215, 207 (2000)Google Scholar
  3. 3.
    Carrillo-Cabrera W., Borrmann H., Paschen S., Baenitz M., Steglich F., Grin Y.: J. Solid State Chem. 178, 715 (2005)CrossRefADSGoogle Scholar
  4. 4.
    G.A. Jeffrey, in Inclusion Compounds, vol. 1, ed. by J.L. Atwood, J.E.D. Davis, D.D. MacNicol (Academic Press, London, 1984), p. 135Google Scholar
  5. 5.
    Kasper J.S., Hagenmuller P., Pouchard M., Cros C.: Science 150, 1713 (1965)CrossRefADSGoogle Scholar
  6. 6.
    Cohn J.L., Nolas G.S., Fessatisdis V., Metcalf T.H., Slack G.A.: Phys. Rev. Lett. 82, 779 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Nolas G.S., Cohn J.L., Slack G.A., Schujman S.B.: Appl. Phys. Lett. 73, 178 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Sales B.C., Chakoumakos B.C., Jin R., Thompson J.R., Mandrus D.: Phys. Rev. B 63, 245113 (2001)CrossRefADSGoogle Scholar
  9. 9.
    Rhim W.-K., Chung S.K., Barber D., Man K.F., Gutt G., Rulison A., Spjut R.E.: Rev. Sci. Instrum. 64, 2961 (1993)CrossRefADSGoogle Scholar
  10. 10.
    Ishikawa T., Paradis P.-F., Yoda S.: Rev. Sci. Instrum. 72, 2490 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Izumi F., Ikeda T.: Mater. Sci. Forum 321-324, 198 (2000)CrossRefGoogle Scholar
  12. 12.
    Chung S.K., Thiessen D.B., Rhim W.-K.: Rev. Sci. Instrum. 67, 3175 (1996)CrossRefADSGoogle Scholar
  13. 13.
    Rhim W.-K., Ohsaka K., Paradis P.-F.: Rev. Sci. Instrum. 70, 2796 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Ishikawa T., Paradis P.-F., Itami T., Yoda S.: Meas. Sci. Technol. 16, 443 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Rhim W.-K., Ishikawa T.: Int. J. Thermophys. 21, 429 (2000)CrossRefGoogle Scholar
  16. 16.
    Tanaka T.: MRS Bull. 24, 45 (1999)Google Scholar
  17. 17.
    Ishikura A., Mizuno A., Watanabe M., Masaki T., Ishikawa T., Kohara S.: J. Am. Ceram. Soc. 90, 738 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akiko Ishikura
    • 1
  • Akitoshi Mizuno
    • 1
  • Masahito Watanabe
    • 1
  • Tadahiko Masaki
    • 2
  • Takehiko Ishikawa
    • 2
  • Shinichi Yoda
    • 2
  1. 1.Department of PhysicsGakushuin UniversityTokyoJapan
  2. 2.Japan Aerospace Exploration Agency (JAXA)TsukubaJapan

Personalised recommendations