International Journal of Thermophysics

, Volume 31, Issue 10, pp 1935–1944

Thermal Conductivity and Interfacial Thermal Resistance in Bilayered Nanofilms by Nonequilibrium Molecular Dynamics Simulations

Article

Abstract

A nonequilibrium molecular dynamics study of the cross-plane thermal conductivity and interfacial thermal resistance of nanoscale bilayered films is presented. The films under study are composed of argon and another material that is identical to argon except for its atomic mass. The results show that a large temperature jump occurs at the interface and that the interfacial thermal resistance plays an important role in heat conduction for the whole films. The cross-plane thermal conductivity is dependent on the average temperature. The interfacial thermal resistance is found to be dependent apparently on the atomic mass ratio of the two materials and the temperature, but to be independent of the film thickness. A linear relationship is observed between the reciprocal of the cross-plane thermal conductivity and that of the film thickness with the film thickness between 5.4 nm and 64.9 nm, which is in good agreement with results in the literature for a single film.

Keywords

Interface Molecular dynamics Thermal conductivity Thermal resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kapitza P.L.: J. Phys. (USSR) 4, 181 (1941)Google Scholar
  2. 2.
    Khalatnikov M.: Zh. Eksp. Teor. Fiz. 22, 687 (1952)Google Scholar
  3. 3.
    Swartz E.T., Pohl R.O.: Rev. Mod. Phys. 61, 605 (1989)CrossRefADSGoogle Scholar
  4. 4.
    Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar G.A., Maris H.J., Merlin R., Phillpot S.R.: J. Appl. Phys. 93, 793 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Stoner R.J., Maris H.J.: Phys. Rev. B 48, 16373 (1993)CrossRefADSGoogle Scholar
  6. 6.
    Costescu R.M., Wall M.A., Cahill D.G.: Phys. Rev. B 67, 054302 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Lyeo H.K., Cahill D.G.: Phys. Rev. B 73, 144301 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Maiti A., Mahan G.D., Pantelides S.T.: Solid State Commun. 102, 517 (1997)CrossRefADSGoogle Scholar
  9. 9.
    Schelling P.K., Phillpot S.R., Keblinski P.: J. Appl. Phys. 95, 6082 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Daly B.C., Maris H.J., Imamura K., Tamura S.: Phys. Rev. B 66, 024301 (2002)CrossRefADSGoogle Scholar
  11. 11.
    Daly B.C., Maris H.J., Tanaka Y., Tamura S.: Phys. Rev. B 67, 033308 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Abramson A.R., Tien C.L., Majumdar A.: J. Heat Transfer 124, 963 (2002)CrossRefGoogle Scholar
  13. 13.
    Chen Y.F., Li D.Y., Yang J.K., Wu Y.H., Lukes J.R., Majumdar A.: Physica B 349, 270 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Liang X.G., Sun L.: Microscale Thermophys. Eng. 9, 295 (2005)CrossRefGoogle Scholar
  15. 15.
    Rapaport D.C.: The Art of Molecular Dynamics Simulation, 2nd edn, pp. 11–43. University Press, Cambridge (2004)MATHGoogle Scholar
  16. 16.
    Jund P., Jullien R.: Phys. Rev. B 59, 13707 (1999)CrossRefADSGoogle Scholar
  17. 17.
    Tretiakov K.V., Scandolo S.: J. Chem. Phys. 120, 3765 (2004)CrossRefADSGoogle Scholar
  18. 18.
    Zhong H.L., Lukes J.R.: Phys. Rev. B 74, 125403 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Lukes J.R., Li D.Y., Liang X.G., Tien C.L.: J. Heat Transfer 122, 536 (2000)CrossRefGoogle Scholar
  20. 20.
    Schelling P.K., Phillpot S.R., Keblinski P.: Phys. Rev. B 65, 144306 (2002)CrossRefADSGoogle Scholar
  21. 21.
    Heino P.: Phys. Rev. B 71, 144302 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, Key Laboratory for Thermal Science and Power Engineering, Ministry of Education of ChinaTsinghua UniversityBeijingChina

Personalised recommendations