Advertisement

International Journal of Thermophysics

, Volume 29, Issue 6, pp 1987–1996 | Cite as

Phonon Contribution to Thermal Boundary Conductance at Metal Interfaces Using Embedded Atom Method Simulations

  • R. N. Salaway
  • P. E. Hopkins
  • P. M. Norris
  • R. J. Stevens
Article

Abstract

The phonon contribution to the thermal boundary conductance (TBC) at metal–metal interfaces is difficult to study experimentally, and it is typically considered negligible. In this study, molecular dynamics simulations (MDS), employing an embedded atom method (EAM) potential, are performed to study the phonon contribution to thermal transport across an Al–Cu interface. The embedded atom method provides a realistic model of atomic behavior in metals, while suppressing the effect on conduction electrons. In this way, measurements on the phonon system may be observed that would otherwise be dominated by the electron contribution in experimental methods. The relative phonon contribution to the TBC is calculated by comparing EAM results to previous experimental results which include both electron and phonon contributions. It is seen from the data that the relative phonon contribution increases with decreasing temperature, possibly accounting for more than half the overall TBC at temperatures below 100 K. These results suggest that neglect of interfacial phonon transport may not be a valid assumption at low temperatures, and may have implications in the future development of TBC models for metal interfaces.

Keywords

Embedded atom method Interface Metal Molecular dynamics simulations Phonon Thermal boundary conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yuan T.-D., Hong B.Z., Chen H.-H., Wang L.-K.: Microelectron. Reliab. 42, 101 (2002)CrossRefGoogle Scholar
  2. 2.
    Ernst F.: Mater. Sci. Eng. 14, 97 (1995)CrossRefGoogle Scholar
  3. 3.
    Kapitza P.L.: Zh. eksp. teor. fiziki 11, 1 (1941)Google Scholar
  4. 4.
    Stevens R.J., Smith A.N., Norris P.M.: J. Heat Transfer 127, 315 (2005)CrossRefGoogle Scholar
  5. 5.
    Capinski W.S., Maris H.J., Ruf T., Cardona M., Ploog K., Katzer D.S.: Phys. Rev. B 59, 8105 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Goodson K.E., Ju Y.S.: Ann. Rev. Mater. Sci. 29, 261 (1999)CrossRefGoogle Scholar
  7. 7.
    Kittel C.: Introduction to Solid State Physics, 7th edn. Wiley, New York, (1996)Google Scholar
  8. 8.
    Swartz E.T., Pohl R.O.: Appl. Phys. Lett. 51, 2200 (1987)CrossRefADSGoogle Scholar
  9. 9.
    Swartz E.T., Pohl R.O.: Rev. Mod. Phys. 61, 605 (1989)CrossRefADSGoogle Scholar
  10. 10.
    Choi S.-H., Maruyama S.: Int. J. Therm. Sci. 44, 547 (2005)CrossRefGoogle Scholar
  11. 11.
    Reddy P., Castelino K., Majumdar A.: Appl. Phys. Lett. 87, 211908 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Daw M.S., Baskes M.I.: Phys. Rev. Lett. 50, 1285 (1983)CrossRefADSGoogle Scholar
  13. 13.
    Foiles S.M., Baskes M.I., Daw M.S.: Phys. Rev. B 33, 7983 (1986)CrossRefADSGoogle Scholar
  14. 14.
    Daw M.S., Baskes M.I.: Phys. Rev. B 29, 6443 (1984)CrossRefADSGoogle Scholar
  15. 15.
    Lukes J.R., Li D.Y., Liang X.-G., Tien C.-L.: Trans. ASME 122, 536 (2000)CrossRefGoogle Scholar
  16. 16.
    Gundrum B.C., Cahill D.G., Averback R.S.: Phys. Rev. B 72, 1 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. N. Salaway
    • 1
  • P. E. Hopkins
    • 1
  • P. M. Norris
    • 1
  • R. J. Stevens
    • 2
  1. 1.Microscale Heat Transfer Laboratory, Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Mechanical EngineeringRochester Institute of TechnologyRochesterUSA

Personalised recommendations