International Journal of Thermophysics

, Volume 29, Issue 4, pp 1222–1243 | Cite as

Viscosity of Imidazolium-Based Ionic Liquids at Elevated Pressures: Cation and Anion Effects

Article

Abstract

The viscosity of imidazolium-based ionic liquids with four different cations and three different anions was measured to pressures of 126 MPa and at three temperatures (298.15 K, 323.15 K, and 343.15 K). The high-pressure viscosity of 1-ethyl-3-methylimidazolium ([EMIm]), 1-n-hexyl-3-methylimidazolium ([HMIm]), and 1-n-decyl-3-methylimidazolium ([DMIm]) cations with a common anion, bis(trifluoromethylsulfonyl)imide ([Tf2N]), was measured to determine the alkyl-chain length effect of the cation. An increase in the alkyl-chain length increased the viscosity at elevated pressures. [DMIm] exhibited a larger nonlinear increase with pressure over the shorter alkyl substituents. Anion effects were investigated with [HMIm] as a common cation and anions of [Tf2N], hexafluorophosphate ([PF6]), and tetrafluoroborate ([BF4]). [HMIm][PF6], with the highest viscosity, demonstrated a very nonlinear pressure dependence even at relatively moderate pressures (to 30 MPa), similar to the results for [BMIm][PF6]. A combined Litovitz and Tait equation was utilized to describe the viscosity of the ionic liquids with pressure and temperature and demonstrated good correlation with the experimental data.

Keywords

Cation and anion effects High-pressure viscosity Imidazolium ionic liquids Tait equation Litovitz equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forsyth S.A., Pringle J.M., MacFarlane D.R.: Aus. J. Chem. 57, 113 (2004)CrossRefGoogle Scholar
  2. 2.
    Wilkes J.S.: J. Mol. Cat. A 214, 11 (2004)CrossRefGoogle Scholar
  3. 3.
    Ropel L., Belveze L.S., Aki S., Stadtherr M.A., Brennecke J.F.: Green Chem. 7, 83 (2005)CrossRefGoogle Scholar
  4. 4.
    Ahosseini A., Ren W., Scurto A.: Chem. Today/Chim. Oggi 25, 40 (2007)Google Scholar
  5. 5.
    Blanchard L.A., Hancu D., Beckman E.J., Brennecke J.F.: Nature 399, 28 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Cadena C., Anthony J.L., Shah J.K., Morrow T.I., Brennecke J.F., Maginn E.J.: J. Am. Chem. Soc. 126, 5300 (2004)CrossRefGoogle Scholar
  7. 7.
    Fadeev A.G., Meagher M.M. Chem. Comm. 295 (2001)Google Scholar
  8. 8.
    Visser A.E., Swatloski R.P., Reichert W.M., Griffin S.T., Rogers R.D.: Ind. Eng. Chem. Res 39, 3596 (2000)CrossRefGoogle Scholar
  9. 9.
    Quinn B.M., Ding Z., Moulton R., Bard A.J.: Langmuir 18, 1734 (2002)CrossRefGoogle Scholar
  10. 10.
    Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L.: Inorg. Chem. 21, 1263 (1982)CrossRefGoogle Scholar
  11. 11.
    Endres F.: ChemPhysChem 3, 144 (2002)CrossRefGoogle Scholar
  12. 12.
    Fuller J., Carlin R.T., Osteryoung R.A.: J. Electrochem. Soc. 144, 3881 (1997)CrossRefGoogle Scholar
  13. 13.
    Fuller J., Breda A.C., Carlin R.T.: J. Electroanal. Chem. 459, 29 (1998)CrossRefGoogle Scholar
  14. 14.
    Lu W., Fadeev A.G., Qi B., Smela E., Mattes B.R., Ding J., Spinks G.M., Mazurkiewicz J., Zhou D., Wallace G.G.: Science 297, 983 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Chauvin Y., Mussmann L., Olivier H.: Angew. Chem. Int. Ed. 34, 2698 (1995)Google Scholar
  16. 16.
    Kragl U., Eckstein M., Kaftzik N.: Curr. Opin. Biotech. 13, 565 (2002)CrossRefGoogle Scholar
  17. 17.
    Lozano P., De Diego T., Carrié D., Vaultier M., Iborra J.L.: Biotech. Lett. 23, 1529 (2001)CrossRefGoogle Scholar
  18. 18.
    Sheldon R.A., Lau R.M., Sorgedrager M.J., van Rantwijk F., Seddon K.R.: Green Chem. 4, 147 (2002)CrossRefGoogle Scholar
  19. 19.
    Welton T.: Chem. Rev. 99, 2071 (1999)CrossRefGoogle Scholar
  20. 20.
    Zhao D., Wu M., Kou Y., Min E.: Catal. Today 74, 157 (2002)CrossRefGoogle Scholar
  21. 21.
    Van Valkenburg M.E., Vaughn R.L., Williams M., Wilkes J.S.: Thermochim. Acta 425, 181 (2005)CrossRefGoogle Scholar
  22. 22.
    Koch V.R., Nanjundiah C., Carlin R.T., U.S. Patent No. 5,827,602, Oct. 27, 1998Google Scholar
  23. 23.
    Bird R.B., Stewart W.E., Lightfoot E.N.: Transport Phenomena. Wiley, New York (1960)Google Scholar
  24. 24.
    Tokuda H., Ishii K., Susan M., Tsuzuki S., Hayamizu K., Watanabe M.: J. Phys. Chem. B 110, 2833 (2006)CrossRefGoogle Scholar
  25. 25.
    Harris K.R., Kanakubo M., Woolf L.A.: J. Chem. Eng. Data 51, 1161 (2006)CrossRefGoogle Scholar
  26. 26.
    Kelkar M.S., Maginn E.J.: J. Phys. Chem. B 111, 4867 (2007)CrossRefGoogle Scholar
  27. 27.
    Glasstone S., Laidler K.J., Eyring H.: The Theory of Rate Processes. McGraw-Hill, New York (1941)Google Scholar
  28. 28.
    Kelkar M.S., Maginn E.J.: J. Phys. Chem. B 111, 4867 (2007)CrossRefGoogle Scholar
  29. 29.
    Abbott A.P., Capper G., Gray S.: ChemPhysChem 7, 803 (2006)CrossRefGoogle Scholar
  30. 30.
    Abbott A.P.: ChemPhysChem 6, 2503 (2005)Google Scholar
  31. 31.
    Abbott A.P.: ChemPhysChem 5, 1242 (2004)CrossRefGoogle Scholar
  32. 32.
    Vogel H.: Phys. Z 22, 645 (1921)Google Scholar
  33. 33.
    Fulcher G.S.: Am. Ceram. Soc. J. 8, 339 (1925)CrossRefGoogle Scholar
  34. 34.
    Tammann G., Hesse W.: Z. Anorg. Allg. Chem. 156, 245 (1926)CrossRefGoogle Scholar
  35. 35.
    Litovitz T.A.: J. Chem. Phys. 20, 1088 (1952)CrossRefADSGoogle Scholar
  36. 36.
    Litovitz T.A.: J. Chem. Phys. 20, 1980 (1952)CrossRefADSGoogle Scholar
  37. 37.
    Crosthwaite J.M., Muldoon M.J., Dixon J.K., Anderson J.L., Brennecke J.F.: J. Chem. Thermodyn. 37, 559 (2005)CrossRefGoogle Scholar
  38. 38.
    Tokuda H., Hayamizu K., Ishii K., Susan M., Watanabe M.: J. Phys. Chem. B 108, 16593 (2004)CrossRefGoogle Scholar
  39. 39.
    Tokuda H., Hayamizu K., Ishii K., Susan M., Watanabe M.: J. Phys. Chem. B 109, 6103 (2005)CrossRefGoogle Scholar
  40. 40.
    Harris K.R., Woolf L.A., Kanakubo M.: J. Chem. Eng. Data 50, 1777 (2005)CrossRefGoogle Scholar
  41. 41.
    Harris K.R., Kanakubo M., Woolf L.A.: J. Chem. Eng. Data 52, 1080 (2007)CrossRefGoogle Scholar
  42. 42.
    Kanakubo M., Harris K.R., Tsuchihashi N., Ibuki K., Ueno M.: J. Phys. Chem. B 111, 2062 (2007)CrossRefGoogle Scholar
  43. 43.
    Tomida D., Kumagai A., Qiao K., Yokoyama C.: Int. J. Thermophys. 27, 39 (2006)CrossRefGoogle Scholar
  44. 44.
    Tomida D., Kumagai A., Kenmochi S., Qiao K., Yokoyama C.: J. Chem. Eng. Data 52, 577 (2007)CrossRefGoogle Scholar
  45. 45.
    Dymond J.H., Malhotra R.: Int. J. Thermophys. 9, 941 (1988)CrossRefGoogle Scholar
  46. 46.
    Kashiwagi H., Makita T.: Int. J. Thermophys. 3, 289 (1982)CrossRefGoogle Scholar
  47. 47.
    Bonhôte P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Gratzel M.: Inorg. Chem. 35, 1168 (1996)CrossRefGoogle Scholar
  48. 48.
    Burrell A.K., Sesto R.E.D., Baker S.N., McCleskey T.M., Baker G.A.: Green Chem. 9, 449 (2007)CrossRefGoogle Scholar
  49. 49.
    Nockemann P., Binnemans K., Driesen K.: Chem. Phys. Lett. 415, 131 (2005)CrossRefADSGoogle Scholar
  50. 50.
    Maruyama T., Nagasawa S., Goto M.: Biotech. Lett. 24, 1341 (2002)CrossRefGoogle Scholar
  51. 51.
    Wang B., Kang Y.R., Yang L.M., Suo J.S.: J. Mol. Catal. A 203, 29 (2003)CrossRefADSGoogle Scholar
  52. 52.
    Dymond J.H., Young K.J., Isdale J.D.: Int. J. Thermophys. 1, 345 (1980)Google Scholar
  53. 53.
    Kiran E., Sen Y.L.: Int. J. Thermophys. 13, 411 (1992)CrossRefGoogle Scholar
  54. 54.
    Oliveira C.M.B.P., Wakeham W.A.: Int. J. Thermophys. 13, 773 (1992)CrossRefGoogle Scholar
  55. 55.
    Fieggen W.: Recl. Trav. Chim. Pay. B 89, 625 (1970)Google Scholar
  56. 56.
    Ray H.S., Pal S.: Ironmak. Steelmak. 31, 125 (2004)CrossRefGoogle Scholar
  57. 57.
    Xiong Y., Kiran E.: Polymer 38, 5185 (1997)CrossRefGoogle Scholar
  58. 58.
    Dyre J.C., Christensen T., Olsen N.B.: J. Non-Cryst. Solids 352, 4635 (2006)CrossRefADSGoogle Scholar
  59. 59.
    Mano J.F., Pereira E.: J. Phys. Chem. 108, 10824 (2004)Google Scholar
  60. 60.
    Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D.: Green Chem. 3, 156 (2001)CrossRefGoogle Scholar
  61. 61.
    Angell C.: J. Phys. Chem. Solids 49, 863 (1988)CrossRefADSGoogle Scholar
  62. 62.
    Seddon K.R., Stark A., Torres M.J.: Pure Appl. Chem. 72, 2275 (2000)CrossRefGoogle Scholar
  63. 63.
    Widegren J.A., Laesecke A., Magee J.W. Chem. Commun. 1610 (2005)Google Scholar
  64. 64.
    Tokuda H., Ishii K., Susan M., Tsuzuki S., Hayamizu K., Watanabe M.: J. Phys. Chem. B 110, 2833 (2006)CrossRefGoogle Scholar
  65. 65.
    Gomesde Azevedo R., Esperança J.M.S.S., Najdanovic-Visak V., Visak Z.P., Guedes H.J.R., Nunesda Ponte M., Rebelo L.P.N.: J. Chem. Eng. Data 50, 997 (2005)CrossRefGoogle Scholar
  66. 66.
    Gomesde Azevedo R., Esperança J., Szydlowski J., Visak Z.P., Pires P.F., Guedes H.J.R., Rebelo L.P.N.: J. Chem. Thermodyn. 37, 888 (2005)CrossRefGoogle Scholar
  67. 67.
    Sanmamed Y.A., González-Salgado D., Troncoso J., Cerdeiriña C.A., Romaní L.: Fluid Phase Equilib. 252, 96 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical & Petroleum EngineeringUniversity of KansasLawrenceUSA
  2. 2.NSF-ERC Center for Environmentally Beneficial CatalysisUniversity of KansasLawrenceUSA

Personalised recommendations