Advertisement

International Journal of Thermophysics

, Volume 30, Issue 1, pp 265–275 | Cite as

In situ Gas Temperature Measurements by UV-Absorption Spectroscopy

  • A. FateevEmail author
  • S. Clausen
Article

Abstract

The absorption spectrum of the NO A2Σ+ ← X2Πγ-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in the range from 23 °C to 1,500 °C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution γ-absorption bands and (2) from the analysis of vibrational distribution in the NO γ-absorption system in the (211–238) nm spectral range. The accuracy of both methods is discussed. Validation of the classical Lambert–Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 °C over an optical absorption path length of 0.533 m.

Keywords

High gas temperature Nitric oxide Lambert–Beer law UV absorption spectroscopy Vibrational relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Clausen, K.A. Nielsen, A. Fateev, to be submitted to Meas. Sci. TechnolGoogle Scholar
  2. 2.
    Bak J., Clausen S.: J. Quant. Spectrosc. Radiat. Transfer 61, 687 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Piper L.G., Cowles L.M.: J. Chem. Phys. 85, 2419 (1986)CrossRefADSGoogle Scholar
  4. 4.
    Reisel J.R., Carter C.D., Laurendeau N.M.: J. Quant. Spectrosc. Radiat. Transfer 47, 43 (1992)CrossRefADSGoogle Scholar
  5. 5.
    Millikan R.C., White D.R.: J. Chem. Phys. 39, 3209 (1963)CrossRefADSGoogle Scholar
  6. 6.
    Lifshitz A.: J. Chem. Phys. 61, 2478 (1974)CrossRefADSGoogle Scholar
  7. 7.
    Di Rosa M.D., Hanson R.K.: J. Quant. Spectrosc. Radiat. Transfer 52, 515 (1994)CrossRefADSGoogle Scholar
  8. 8.
    Trad H., Higelin P., Djebaili-Chaumeix N., Mounaim-Rousselle C.: J. Quant. Spectrosc. Radiat. Transfer 90, 275 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Okabe H.: Photochemistry of Small Molecules. Wiley, New York (1978)Google Scholar
  10. 10.
    Mellqvist J., Rosen A.: J. Quant. Spectrosc. Radiat. Transfer 56, 209 (1996)CrossRefADSGoogle Scholar
  11. 11.
    J. Luque, D.R. Crosley, LIFBASE: Database and Simulation Program (Version 1.6). SRI International Report MP 99-009 (1999)Google Scholar
  12. 12.
    Donovan R.J., Hussain D., Kirsch L.J.: Trans. Faraday Soc. 66, 2551 (1970)CrossRefGoogle Scholar
  13. 13.
    K.P. Huber, G. Herzberg, Constants of diatomic molecules (data prepared by J.W. Gallagher and R.D. Johnson, III), in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, MD, 2005), http://webbook.nist.gov

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Risø National Laboratory for Sustainable EnergyTechnical University of Denmark - DTURoskildeDenmark

Personalised recommendations