International Journal of Thermophysics

, Volume 29, Issue 2, pp 764–786 | Cite as

Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-flight Measurements of Atmospheric Plasma-Sprayed Particles



Growing demands on the quality of plasma-sprayed coatings require reliable methods to monitor and optimize the spraying processes. As the coating microstructures are dependent on the characteristics of the powder feedstock, particle in-flight diagnostics is of great importance. In particular, the melting status of the particles is critical in this regard. Thus, the accurate determination of the particle temperature is necessary. In-flight particle temperature measurements during atmospheric plasma spraying (APS) of tungsten, molybdenum, and yttria-stabilized zirconia by two-color pyrometry were analyzed statistically. The diagnostic tool applied is the DPV-2000 (Tecnar). The particle temperature distributions allow for assessment of the melting status of the particles as well as the identification of the melting temperature and particle fractions in the molten and solidification state. Furthermore, the relevant systematic and material-dependent sources for measurement errors using two-color pyrometry were investigated. Their influence was carefully estimated and corrected. As long as there are reliable data available on the emissivity of the powder material, good agreement between the corrected measured melting temperatures and the reference data can be expected.


Diagnostics Particle characteristics Plasma spraying Two-color pyrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fincke, J.R., Haggard, D.C., Swank, W.D.: J. Therm. Spray Technol. 10, 255 (2001)CrossRefADSGoogle Scholar
  2. 2.
    Streibl, T., Vaidya, A., Friis, M., Srinivasan, V., Sampath, S.: Plasma Chem. Plasma Process. 26, 73 (2006)CrossRefGoogle Scholar
  3. 3.
    Sarou-Kanian, V., Rifflet, J.C., Millot, F.: Int. J. Thermophys. 26, 1263 (2005)CrossRefGoogle Scholar
  4. 4.
    Cagran, C., Pottlacher, G., Rink, M., Bauer, W.: Int. J. Thermophys. 26, 1001 (2005)CrossRefGoogle Scholar
  5. 5.
    Watanabe, H., Susa, M., Fukuyama, H., Nagata, K.: Int. J. Thermophys. 24, 223 (2003)CrossRefGoogle Scholar
  6. 6.
    Madura, H., Piatkowski, T.: Infrared Phys. Technol. 46, 185 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Mates, S.P., Basak, D., Biancaniello, F.S., Ridder, S.D., Geist, J.: J. Therm. Spray Technol. 11, 195 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Tanaka, H., Sawai, S., Korimoto, K., Hisano, K.: J. Therm. Anal. Calorimet. 64, 867 (2001)CrossRefGoogle Scholar
  9. 9.
    Ferriere, A., Lestrade, L., Robert, J.-F.: J. Sol. Energ. – Trans. ASME 122, 9 (2000)Google Scholar
  10. 10.
    Y.S. Touloukian, D.P. DeWitt, Thermal Radiative Properties, Nonmetallic Solids, Thermophysical Properties of Matter, vol. 8 (IFI/Plenum, New York/Washington, 1972)Google Scholar
  11. 11.
    Eldridge, J.I., Spuckler, C.M., Street, K.W., Markham, J.R.: Ceram Eng. Sci. Proc. USA 23, 417 (2002)Google Scholar
  12. 12.
    Petrov, V.A., Vorobyev, A.Y., Chernyshev, A.P.: High Temp. High Press. 34, 657 (2002)CrossRefGoogle Scholar
  13. 13.
    Akopov, F.A., Val’yano, G.E., Vorob’ev, A.Y., Mineev, V.N., Petrov, V.A., Chernyshev, A.P.: High Temp. 39, 244 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Stuke, R. Carius, J.-L. Marqués, G. Mauer, M. Schulte, D. Sebold, R. Vaßen, D. Stöver, Optimizing of the reflectivity of air plasma sprayed ceramic thermal barrier coatings, in 31st International Cocoa Beach Conference on Advanced Ceramics and Composites, Daytona Beach, Florida (2007)Google Scholar
  15. 15.
    S. Eckhoff, I. Alxneit, M. Musella, H.-R. Tschudi, Development of a reflectometer for the determination of the spectral emittance in the visible at high temperatures, in PSI Scientific Report – Annex V (Paul Scherrer Institut, Villigen, Switzerland, 2000), p. 26Google Scholar
  16. 16.
    Gougeon, P., Moreau, C.: J. Therm. Spray Technol. 2, 229 (1993)CrossRefADSGoogle Scholar
  17. 17.
    Hollis, K., Neiser, R.: J. Therm. Spray Technol. 7, 383 (1998)CrossRefADSGoogle Scholar
  18. 18.
    Hollis, K., Neiser, R.: J. Therm. Spray Technol. 7, 392 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Salhi, Z., Gougeon, P., Klein, D., Coddet, C.: Infrared Phys. Technol. 46, 394 (2005)CrossRefADSGoogle Scholar
  20. 20.
    Yu. Ralchenko, F.-C. Jou, D.E. Kelleher, A.E. Kramida, A. Musgrove, J. Reader, W.L. Wiese, K. Olsen, NIST Atomic Spectra Database, Version 3.1.0, July 2006 (National Institute of Standards and Technology, Gaithersburg, MD), Accessed 3 Jan 2007
  21. 21.
    Xiong, H.-B., Zheng, L.-L., Li, L., Vaidya, A.: Int. J. Heat Mass Transfer 48, 5121 (2005)CrossRefGoogle Scholar
  22. 22.
    Li, L., Vaifya, A., Sampath, S., Xiong, H., Zheng L., J.: Therm. Spray Technol. 15, 97 (2006)CrossRefADSGoogle Scholar
  23. 23.
    Dombrovsky, L.A.: J. Quant. Spectrosc. Radiat. Transfer 73, 433 (2002)CrossRefADSGoogle Scholar
  24. 24.
    Perry, I., Green, D.W., Maloney, J.O. (eds): Perry’s Chemical Engineer’s Handbook, 7th edn. McGraw-Hill, New York (1997)Google Scholar
  25. 25.
    Chae, Y.K., Mostaghimi, J., Yoshida, T.: Sci. Technol. Adv. Mater. 1, 147 (2000)CrossRefGoogle Scholar
  26. 26.
    Wang, G.-X., Goswami, R., Sampath, S., Prasad, V.: Mater. Manuf. Process. 19, 259 (2004)CrossRefGoogle Scholar
  27. 27.
    Shinoda, K., Kojima, Y., Yoshida, T.: J. Therm. Spray Technol. 14, 511 (2005)CrossRefADSGoogle Scholar
  28. 28.
    Shinoda, K., Koseki, T., Yoshida, T.: J. Appl. Phys. 100, 1 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für Energieforschung (IEF-1)Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations