Advertisement

International Journal of Thermophysics

, Volume 29, Issue 2, pp 505–533 | Cite as

Densities and Excess, Apparent, and Partial Molar Volumes of Binary Mixtures of BMIMBF4 + Ethanol as a Function of Temperature, Pressure, and Concentration

  • I. M. Abdulagatov
  • A. Tekin
  • J. Safarov
  • A. Shahverdiyev
  • E. Hassel
Article

Abstract

The densities of five BMIMBF4 (1-butyl-3-methylimidazolium tetrafluoroborate) + ethanol binary mixtures with compositions of (0.0701, 0.3147, 0.5384, 0.7452, and 0.9152) mole fraction BMIMBF4 and of pure BMIMBF4 have been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from 298 K to 398 K and at pressures up to 40 MPa. The total uncertainty of density, temperature, pressure, and concentration measurements were estimated to be less than 0.1 kg · m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this article are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The measured densities were used to study derived volumetric properties such as excess, apparent, and partial molar volumes. It is shown that the values of excess molar volume for BMIMBF4 + ethanol mixtures are negative at all measured temperatures and pressures over the whole concentration range. The effect of water content on the measured values of density is discussed. The volumetric (excess, apparent, and partial molar volumes) and structural (direct and total correlation integrals, cluster size) properties of dilute BMIMBF4 + ethanol mixtures were studied in terms of the Krichevskii parameter. The measured densities were used to develop a Tait-type equation of state.

Keywords

Apparent molar volume Binary mixture BMIMBF4 Density Direct and total correlation integrals Ethanol Excess molar volume Ionic liquid Krichevskii function Partial molar volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crosthwaite J.M., Aki S.N.V.K., Maginn E.J., Brennecke J.F. (2004). J. Phys. Chem. B 108: 5113CrossRefGoogle Scholar
  2. 2.
    Crosthwaite J.M., Muldoon M.J., Aki S.N.V.K., Maginn E.J., Brennecke J.F. (2006). J. Phys. Chem. B 110: 9354CrossRefGoogle Scholar
  3. 3.
    Jacquemin J., Husson P., Padua A.A.H., Majer V. (2006). Green Chem. 8, 172CrossRefGoogle Scholar
  4. 4.
    Seddon K.R., Stark A., Torres M.-J. (2000). Pure Appl. Chem. 72: 2275CrossRefGoogle Scholar
  5. 5.
    Annat G., MacFarlane D.R., Forsyth M. (2007). J. Phys. Chem. B 111: 9018CrossRefGoogle Scholar
  6. 6.
    Tomida D., Kumagai A., Qiao K., Yokoyama C. (2006). Int. J. Thermophys. 27, 39CrossRefGoogle Scholar
  7. 7.
    Zhang Q.-G., Xue F., Tong J., Guan W., Wang B. (2006). J. Solution Chem. 35, 297CrossRefGoogle Scholar
  8. 8.
    Yang J.-Z., Gui J.-S., Lu X.-M., Zhang Q.-G., Li H.-W. (2005). Acta Chim. Sinica 63, 577Google Scholar
  9. 9.
    Tekin A., Safarov J., Shahverdiyev A., Hassel E. (2007). J. Mol. Liquids 136, 177CrossRefGoogle Scholar
  10. 10.
    Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D. (2001). Green Chem. 3, 156CrossRefGoogle Scholar
  11. 11.
    Wang J., Tian Y., Zhao Y., Zhuo K. (2003). Green Chem. 5, 618CrossRefGoogle Scholar
  12. 12.
    Fredlake C.P., Crosthwaite J.M., Hert D.G., Aki S.N.V.K., Brennecke J.F. (2004). J. Chem. Eng. Data 49, 965CrossRefGoogle Scholar
  13. 13.
    Tokuda H., Hayamizu K., Ishii K., Susan M.A.B.H., Watanabe M. (2004). J. Phys. Chem. B 108: 16593CrossRefGoogle Scholar
  14. 14.
    de Azevedo R.G., Esperanca J.M.S.S., Najdanovic-Visak V., Visak Z.P., Guedes H.J.R., da Ponte M.N., Rebelo L.P.N.J. (2005). J. Chem. Eng. Data 50, 997CrossRefGoogle Scholar
  15. 15.
    Zhou Q., Wang L.-S., Chen H.-P.J. (2006). J. Chem. Eng. Data 51, 905CrossRefGoogle Scholar
  16. 16.
    Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.J. (2007). J. Chem. Eng. Data 52, 80CrossRefGoogle Scholar
  17. 17.
    Suarez P.A.Z., Einloft S., Dullius J.E.L., de Souza R.F., Dupont J. (1998). J. Chim. Phys.-Chim. Biol. 95: 1626CrossRefADSGoogle Scholar
  18. 18.
    Hagiwara R., Ito Y. (2000). J. Fluorine Chem. 105, 221CrossRefGoogle Scholar
  19. 19.
    Branco L.C., Rosa J.N., Ramos J.J.M., Afonso C.A.M. (2002). Chem.-Eur. J. 8: 3671CrossRefGoogle Scholar
  20. 20.
    Kim S.K., Shin B.K., Huen L. (2004). Korean. J. Chem. Eng. 21: 1010CrossRefGoogle Scholar
  21. 21.
    K. Seddon, A. Stark, M.-J. Torres, ACS Symp. Series, Chap. 4 (2002), p. 34Google Scholar
  22. 22.
    Rebelo L.P.N., Najdanovic-Visak V., Visak Z.P., Nunes da Ponte M., Szydlowski J., Cerdeirina C.A., Troncoso J., Romani L., Esperanca J.M.S.S., Guedes H.J.R., deSousa H.C. (2004). Green Chem. 6, 369CrossRefGoogle Scholar
  23. 23.
    Zafarani-Moattar M.T., Shekaari H.J. (2006). J. Chem. Thermodyn. 38: 1377CrossRefGoogle Scholar
  24. 24.
    Nishida T., Tashiro Y., Yamamoto M. (2003). J. Fluorine Chem. 120, 135CrossRefGoogle Scholar
  25. 25.
    Sanmamed Y.A., Gonzalez-Salagado D., Troncoso J., Cerdeirina C.A., Romani L. (2007). Fluid Phase Equilib. 252, 96CrossRefGoogle Scholar
  26. 26.
    Aki S.N.V.K., Mellein B.R., Saurer E.M., Brennecke J.F. (2004). J. Phys. Chem. B 108: 20355CrossRefGoogle Scholar
  27. 27.
    Lopes J.N.C., Cordeiro T.C., Esperanca J.M.S.S., Guedes H.J.R., Huq S., Rebelo L.P.N., Seddon K.R. (2005). J. Phys. Chem. 109: 3519Google Scholar
  28. 28.
    Wagner W., Pruß A. (2002). J. Phys. Chem. Ref. Data 31, 387CrossRefADSGoogle Scholar
  29. 29.
    de Reuck K.M., Craven R.J.B. (1993). Methanol International Thermodynamic Tables of the Fluid State-12. Blackwell Scientific, OxfordGoogle Scholar
  30. 30.
    I.M. Abdulagatov, A. Tekin, J. Safarov, A. Shahverdiyev, E. Hassel, J. Sol. Chem. (in press)Google Scholar
  31. 31.
    Ihmels E.C., Gmehling J. (2001). Ind. Eng. Chem. Res. 40: 4470CrossRefGoogle Scholar
  32. 32.
    Assael M.J., Dymond J.H., Exadaktilou D. (1994). Int. J. Thermophys. 15, 155CrossRefGoogle Scholar
  33. 33.
    Dymond J.H., Malhotra R. (1987). Int. J. Thermophys. 8, 541CrossRefGoogle Scholar
  34. 34.
    Dymond J.H., Malhotra R. (1988). Int. J. Thermophys. 8, 941CrossRefGoogle Scholar
  35. 35.
    Kumagai A., Date K., Iwasaki H. (1976). J. Chem. Eng. Data 21, 226CrossRefGoogle Scholar
  36. 36.
    J.A. Widegren, A. Laesecke, J.W. Magee, Chem. Comm. 1610 (2005)Google Scholar
  37. 37.
    Marsh K.N., Boxall J.A., Lichtenthaler R. (2004). Fluid Phase Equilib. 219, 93CrossRefGoogle Scholar
  38. 38.
    Van Valkenburg M.E., Vaughn R.L., Williams M., Wilkes J.S. (2005). Thermochim. Acta 425, 181CrossRefGoogle Scholar
  39. 39.
    Dominguez-Vidal A., Kaun N., Ayora-Canada M.J., Lendl B. (2007). J. Phys. Chem. B 111: 4446CrossRefGoogle Scholar
  40. 40.
    M.L. Japas, J.L. Alvarez, J. Kukuljan, K. Gutkowski, R. Fernández-Prini, in Steam, Water, and Hydrothermal Systems: Proc. 13th Int. Conf. Prop. Water and Steam, ed. by P.R. Tremaine, Ph.G. Hill, D.E. Irish, P.V. Balakrishnan (NRC Research Press, Ottawa, 2000), pp. 165–174Google Scholar
  41. 41.
    Dillon H.E., Penoncello S.G. (2004). Int. J. Thermophys. 25, 321CrossRefGoogle Scholar
  42. 42.
    Abdulagatov I.M., Azizov N.D. (2007). J. Therm. Anal. Calorim. 87, 483CrossRefGoogle Scholar
  43. 43.
    Abdulagatov I.M., Azizov N.D. (2006). J. Chem. Thermodyn. 38: 1402CrossRefGoogle Scholar
  44. 44.
    Abdulagatov I.M., Azizov N.D. (2003). Int. J. Thermophys. 24: 1581CrossRefGoogle Scholar
  45. 45.
    Redlich O., Mayer D.M. (1964). Chem. Rev. 64, 221CrossRefGoogle Scholar
  46. 46.
    Roux A., Musbally G.M., Perron G., Desnoyers J.E. (1978). Can. J. Chem. 56, 24CrossRefGoogle Scholar
  47. 47.
    Hiejima Y., Yao M. (2003). J. Chem. Phys. 119: 7931CrossRefADSGoogle Scholar
  48. 48.
    Levelt Sengers J.M.H., Morrison G., Nielson G., Chang R.F., Everhart C.M. (1986). Int. J. Thermophys. 7, 231CrossRefGoogle Scholar
  49. 49.
    Levelt Sengers J.M.H. (1991). J. Supercrit. Fluids 4, 215CrossRefGoogle Scholar
  50. 50.
    Chang R.F., Levelt Sengers J.M.H. (1986). J. Phys. Chem. 90: 5921CrossRefGoogle Scholar
  51. 51.
    Chialvo A.A., Cummings P.T. (1994). AIChE J. 40: 1 558CrossRefGoogle Scholar
  52. 52.
    Debenedetti P.G., Mohamed R.S. (1989). J. Chem. Phys. 90: 4528CrossRefADSGoogle Scholar
  53. 53.
    J.M.H. Levelt Sengers, in Supercritical Fluids: Fundamentals for Applications, ed. by E. Kiran, J.M.H. Levelt Sengers (Kluwer, Dordrecht, 1994), pp. 3–38Google Scholar
  54. 54.
    Fernández-Prini R., Japas M.L. (1994). Chem. Soc. Rev. 23, 155CrossRefGoogle Scholar
  55. 55.
    O’Connell J.P., Hu Y., Marshall K.A. (1999). Fluid Phase Equilib. 158, 583CrossRefGoogle Scholar
  56. 56.
    E.Z. Hamod, G.A. Manssori, in Fluctuation Theory of Mixtures, ed. by E. Matteoli, G.A. Manssori (Taylor and Francis, New York, 1990), pp. 95–130Google Scholar
  57. 57.
    McGuigan D.B., Monson P.A. (1990). Fluid Phase Equilib. 57, 227CrossRefGoogle Scholar
  58. 58.
    Chialvo A.A., Cummings P.T. (1998). AIChE J. 44, 667CrossRefGoogle Scholar
  59. 59.
    O’Connell J.P. (1971). Mol. Phys. 20, 27CrossRefADSGoogle Scholar
  60. 60.
    P.T. Cummings, A.A. Chialvo, Chem. Eng. Sci. 49, 2735 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. M. Abdulagatov
    • 1
  • A. Tekin
    • 2
  • J. Safarov
    • 3
    • 4
  • A. Shahverdiyev
    • 3
  • E. Hassel
    • 4
  1. 1.Physical and Chemical Properties DivisionNational Institute of Standards and TechnologyBoulderUSA
  2. 2.Erciyes UniversityKayseriTurkey
  3. 3.Azerbaijan Technical UniversityBakuAzerbaijan
  4. 4.Lehrstuhl für Technische ThermodynamikUniversität RostockRostockGermany

Personalised recommendations