Advertisement

International Journal of Thermophysics

, Volume 28, Issue 3, pp 947–957 | Cite as

Temperature-Dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 interfaces

  • Patrick E. Hopkins
  • R. N. Salaway
  • R. J. Stevens
  • P. M. Norris
Article

Abstract

With the ever-decreasing size of microelectronic devices, growing applications of superlattices, and development of nanotechnology, thermal resistances of interfaces are becoming increasingly central to thermal management. Although there has been much success in understanding thermal boundary conductance at low temperatures, the current models applied at temperatures more common in device operation are not adequate due to our current limited understanding of phonon transport channels. In this study, the scattering processes in Al and Pt films on Al2O3 substrates are examined by transient thermoreflectance testing at high temperatures. At high temperatures, traditional models predict the thermal boundary conductance to be relatively constant in these systems due to assumptions about phonon elastic scattering. Experiments, however, show an increase in the conductance indicating potential inelastic phonon processes.

Keywords

Diffuse mismatch model Elastic scattering Inelastic scattering Phonon Phonon radiation limit Thermal boundary conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R. (2003). J. Appl. Phys. 93: 793 CrossRefADSGoogle Scholar
  2. 2.
    da Silva L.W., Kaviany M. (2004). Int. J. Heat Mass Transfer 47: 2417 CrossRefGoogle Scholar
  3. 3.
    Mahan G.D., Woods L.M. (1998). Phys. Rev. Lett. 80: 4016 CrossRefADSGoogle Scholar
  4. 4.
    Phelan P.E., Song Y., Nakabeppu O., Ito K., Hijikata K., Ohmori T., Torikoshi K. (1994). J. Heat Transfer 116: 1038 CrossRefGoogle Scholar
  5. 5.
    Phelan P.E. (1998). J. Heat Transfer 120: 37 Google Scholar
  6. 6.
    Chen G., Tien C.L., Wu X., Smith J.S. (1994). J. Heat Transfer 116: 325 Google Scholar
  7. 7.
    Kim E.-K., Kwun S.-I., Lee S.-M., Seo H., Yoon J.-G. (2000). Appl. Phys. Lett. 76: 3864 CrossRefADSGoogle Scholar
  8. 8.
    Swartz E.T., Pohl R.O. (1989). Rev. Mod. Phys. 61: 605 CrossRefADSGoogle Scholar
  9. 9.
    Snyder N.S. (1970). Cryogenics 10: 89 CrossRefGoogle Scholar
  10. 10.
    Stevens R.J., Smith A.N., Norris P.M. (2005). J. Heat Transfer 127: 315 CrossRefGoogle Scholar
  11. 11.
    The term “acoustic mismatch” describes two materials that have significantly different acoustic velocities; the degree of the acoustic mismatch can be easily determined by comparing the materials’ Debye temperatures, θ D Google Scholar
  12. 12.
    Stoner R.J., Maris H.J. (1993). Phys. Rev. B 48: 16373 CrossRefADSGoogle Scholar
  13. 13.
    Chen Y., Li D., Yang J., Wu Y., Lukes J., Majumdar A. (2004). Physica B 349: 270 CrossRefADSGoogle Scholar
  14. 14.
    R.J. Stevens, L.V. Zhigilei, P.M. Norris, Int. J. Heat Mass Transfer (in press)Google Scholar
  15. 15.
    Schelling P.K., Phillpot S.R., Keblinski P. (2002). Phys. Rev. B 65: 114306 CrossRefGoogle Scholar
  16. 16.
    Lyeo H.-K., Cahill D.G. (2006). Phys. Rev. B 73: 144301 CrossRefADSGoogle Scholar
  17. 17.
    Cahill D.G., Bullen A., Lee S.-M. (2000). High Temp.-High Press. 32: 135 Google Scholar
  18. 18.
    Kittel C. (1996). Introduction to Solid State Physics, 7th edn. John Wiley and Sons Inc., New York Google Scholar
  19. 19.
    Young D.A., Maris H.J. (1989). Phys. Rev. B 40: 3685 CrossRefADSGoogle Scholar
  20. 20.
    Hohlfeld J., Wellershoff S.-S., Gudde J., Conrad U., Jahnke V., Matthias E. (2000). Chem. Phys. 251: 237 CrossRefGoogle Scholar
  21. 21.
    Stevens R.J., Smith A.N., Norris P.M. (2006). Rev. Sci. Instrum. 77: 084901 CrossRefADSGoogle Scholar
  22. 22.
    Capinski W.S., Maris H.J. (1996). Rev. Sci. Instrum. 67: 2720 CrossRefADSGoogle Scholar
  23. 23.
    Reddy P., Castelino K., Majumdar A. (2005). Appl. Phys. Lett. 87: 211908 CrossRefADSGoogle Scholar
  24. 24.
    Daly B.C., Maris H.J., Imamura K., Tamura S. (2002). Phys. Rev. B 66: 024301 CrossRefADSGoogle Scholar
  25. 25.
    Gray D.E. (1972). American Institute of Physics Handbook, 3rd edn. McGraw Hill, New York Google Scholar
  26. 26.
    Fugate R.Q., Swenson C.A. (1969). J. Appl. Phys. 40: 3034 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Patrick E. Hopkins
    • 1
  • R. N. Salaway
    • 1
  • R. J. Stevens
    • 2
  • P. M. Norris
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Mechanical EngineeringRochester Institute of TechnologyRochesterUSA

Personalised recommendations