International Journal of Thermophysics

, Volume 28, Issue 2, pp 616–628 | Cite as

Dielectric Spectroscopy of Water Confined Between Aerosil Nanoparticles and in Vycor Nanoporous Glass

  • G. Sinha
  • J. Leys
  • M. Wübbenhorst
  • C. Glorieux
  • J. Thoen
Article

The dynamic properties of water dispersed in compacted aerosils and confined in Vycor porous glass have been investigated by means of dielectric relaxation spectroscopy. The measurements were performed in the frequency range from 10−2 to 107 Hz and in the temperature range from 123 to 300 K. Multiple relaxation processes in bulk water, in water dispersed with aerosil particles, and in Vycor glass were observed. By comparing the presence and absence of the processes in the different samples, it was established that part of the water in confinement crystallizes to a bulk-like ice, whereas the water close to the surfaces evolved to a different phase.

Keywords

aerosils confinement dielectric spectroscopy ice surface relaxation Vycor porous glass water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Debenedetti P.G., Stanley H.E. (2003). Phys. Today 56:40CrossRefGoogle Scholar
  2. 2.
    Mishima O., Stanley H.E. (1998). Nature 396:329CrossRefADSGoogle Scholar
  3. 3.
    Angell C.A. (2002). Chem. Rev. 102:2627CrossRefGoogle Scholar
  4. 4.
    Smith R.S., Kay B.D. (1999). Nature 398:788CrossRefADSGoogle Scholar
  5. 5.
    Bergman R., Swenson J., Borjesson L., Jacobsson P. (2000). J. Chem. Phys. 113:357CrossRefADSGoogle Scholar
  6. 6.
    Cerveny S., Schwartz G.A., Bergman R., Swenson J. (2004). Phys. Rev. Lett. 93:245702CrossRefADSGoogle Scholar
  7. 7.
    Bergman R., Swenson J. (2000). Nature 403:283CrossRefADSGoogle Scholar
  8. 8.
    Sinha G., Glorieux C., Thoen J. (2004). Phys. Rev. E 69:031707CrossRefADSGoogle Scholar
  9. 9.
    Basic Characteristics of AEROSIL (R) Fumed Silica in Tech Bull Fine Particles, No 11, Degussa Corp. (Parippany, NJ, USA, 2003). (http://www/aerosil.com).Google Scholar
  10. 10.
    Levitz P., Ehret G., Sinha S.K., Drake J.M. (1991). J. Chem. Phys. 95:6151CrossRefADSGoogle Scholar
  11. 11.
    Havriliak S., Negami S. (1967). Polymer 8:101CrossRefGoogle Scholar
  12. 12.
    Wübbenhorst M., van Turnhout J. (2002). J. Non-Cryst. Solids 305:40CrossRefGoogle Scholar
  13. 13.
    J.C. Maxwell, Electricity and Magnetism, Vol. 1 (Claredon, Oxford, 1892); K. W. Wagner, Arch. Electrotech. 2:371 (1914).Google Scholar
  14. 14.
    Wettlaufer J.S. (1999) Phil. Trans. R. Soc. Lond. A 357:3403CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. Sinha
    • 1
  • J. Leys
    • 1
  • M. Wübbenhorst
    • 1
  • C. Glorieux
    • 1
  • J. Thoen
    • 1
  1. 1.Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en SterrenkundeKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations