International Journal of Thermophysics

, Volume 28, Issue 2, pp 449–480 | Cite as

Thermophysical Properties of a Refrigerant Mixture of R365mfc (1,1,1,3,3-Pentafluorobutane) and Galden® HT 55 (Perfluoropolyether)

  • A. P. Fröba
  • H. Kremer
  • A. Leipertz
  • F. Flohr
  • C. Meurer

This work presents a comprehensive experimental study of various thermophysical properties of an azeotropic refrigerant mixture of 65 mass% R365mfc (1,1,1,3,3-pentafluorobutane) and 35 mass% Galden® HT 55 (perfluoropolyether). Light scattering from bulk fluids has been applied for measuring both the thermal diffusivity and the speed of sound in the liquid and vapor phases under saturation conditions, between 293 K and the liquid–vapor critical point at 450.7 K. Furthermore, the speed of sound has been measured for the superheated-vapor phase along nine isotherms, between 393 and 523 K and up to a maximum pressure of about 2.5 MPa. For temperatures between 253 and 413 K, light scattering by surface waves on a horizontal liquid–vapor interface has been used for simultaneous determination of the surface tension and kinematic viscosity of the liquid phase. With light scattering techniques, uncertainties of less than ±2.0%, ±0.5%, ±1.5%, and ±1.5% have been achieved for the thermal diffusivity, sound speed, kinematic viscosity, and surface tension, respectively. In addition to vapor-pressure measurements between 304 and 448 K, the density was measured between 273 and 443 K using a vibrating-tube method. Here, measurements have been performed in the compressed- and saturated-liquid phases with uncertainties of ±0.3% and ±0.1%, respectively, as well as for the superheated vapor up to a maximum pressure of about 3 MPa with an uncertainty between ±0.3% and ±3%. Critical-point parameters were derived by combining the data obtained by different techniques.


density Galden® HT 55 1,1,1,3,3-pentafluorobutane perfluoropolyether R365mfc Solkatherm® SES36 sound speed surface tension thermal diffusivity vapor pressure viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    REFPROP Standard Reference Database 23, Version 7.1 (Nat. Inst. Stds. Technol., Gaithersburg, MD, 2003).Google Scholar
  2. 2.
    B.J. Berne and R. Pecora, Dynamic Light Scattering (Robert E. Krieger, Malabar, 1990).Google Scholar
  3. 3.
    B. Chu, Laser Light Scattering (Academic Press, New York, 1991).Google Scholar
  4. 4.
    J. N. Shaumeyer, R. W. Gammon, and J. V. Sengers, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), pp. 197–213.Google Scholar
  5. 5.
    A. Leipertz and A. P. Fröba, in Diffusion in Condensed Matter – Methods, Materials, Models, P. Heitjans and J. Kärger, eds. (Springer, Berlin, 2005), pp. 583–622.Google Scholar
  6. 6.
    Bardow A. (2007) . Fluid Phase Equilib. 251:121CrossRefGoogle Scholar
  7. 7.
    Wu G., Fiebig M., Leipertz A. (1988) . Int. J. Heat Mass Transfer 31:1471CrossRefGoogle Scholar
  8. 8.
    Leipertz A. (1992) . Chem. Ing. Tech. 64:17CrossRefGoogle Scholar
  9. 9.
    Will S., Fröba A.P., Leipertz A. (1998) . Int. J. Thermophys. 19:403CrossRefGoogle Scholar
  10. 10.
    Fröba A.P., Will S., Leipertz A. (1999) . Fluid Phase Equilib. 161:337CrossRefGoogle Scholar
  11. 11.
    D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).Google Scholar
  12. 12.
    A. P. Fröba, Simultane Bestimmung von Viskosität und Oberflächenspannung transparenter Fluide mittels Ober-flächenlichtstreuung, Dr.-Ing. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (2002).Google Scholar
  13. 13.
    Lucassen-Reynders E.H., Lucassen J. (1969) . Adv. Colloid Interface Sci. 2:347CrossRefGoogle Scholar
  14. 14.
    Fröba A.P., Leipertz A. (2003) . Int. J. Thermophys. 24:895CrossRefGoogle Scholar
  15. 15.
    Marrucho I.M., Oliveira N.S., Dohrn R. (2002) . J. Chem. Eng. Data 47:554CrossRefGoogle Scholar
  16. 16.
    Fröba A.P., Krzeminski K., Leipertz A. (2004) . Int. J. Thermophys. 25:987CrossRefGoogle Scholar
  17. 17.
    W. Wagner, Eine mathematisch statistische Methode zum Aufstellen thermodynamischer Gleichungen - gezeigt am Beispiel der Dampfdruckkurve reiner-fluider Stoffe, Fortschrittsberichte der VDI-Zeitschrift, Reihe 3, Nr. 39 (VDI-Verlag, Düsseldorf, 1974).Google Scholar
  18. 18.
    Pitzer K.S. (1955) . J. Am. Chem. Soc. 77:3427CrossRefGoogle Scholar
  19. 19.
    Pitzer K.S., Lippmann D.Z., Curl R.F., Huggins C.M., Peterson D.E. (1955) . J. Am. Chem. Soc. 77:3433CrossRefGoogle Scholar
  20. 20.
    Weber L.A. (1994) . Int. J. Thermophys. 15:461CrossRefGoogle Scholar
  21. 21.
    Liu D.X., Xiang H.W. (2003) . Int. J. Thermophys. 24:1667CrossRefGoogle Scholar
  22. 22.
    Xiang H.W. (2002) . Chem. Eng. Sci. 57:1439CrossRefGoogle Scholar
  23. 23.
    Gunn R.D., Yamada T. (1971) . AIChE J. 17:1341CrossRefGoogle Scholar
  24. 24.
    Chen Z.-S., Ito T. Proc. 5th Asian Thermophys. Props. Conf. (Seoul, 1998), pp. 321–323.Google Scholar
  25. 25.
    Hu P., Chen Z.-S. (2004) . Fluid Phase Equilib. 221:7CrossRefGoogle Scholar
  26. 26.
    Kraft K., Lopes M.M., Leipertz A. (1995) . Int. J. Thermophys. 16:423CrossRefGoogle Scholar
  27. 27.
    K. G. Joback, A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques, M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1984.Google Scholar
  28. 28.
    R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977 and 1987).Google Scholar
  29. 29.
    Lucas K. (1974) . Chem. Ing. Tech. 46:157CrossRefGoogle Scholar
  30. 30.
    Miqueu C., Broseta D., Satherley J., Mendiboure B., Lachaise J., Graciaa A. (2000) . Fluid Phase Equilib. 172:169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. P. Fröba
    • 1
    • 2
  • H. Kremer
    • 2
  • A. Leipertz
    • 1
    • 2
  • F. Flohr
    • 3
  • C. Meurer
    • 3
  1. 1.Lehrstuhl für Technische Thermodynamik (LTT)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.ESYTEC Energie- und Systemtechnik GmbHErlangenGermany
  3. 3.SOLVAY Fluor GmbHHannoverGermany

Personalised recommendations