International Journal of Thermophysics

, Volume 28, Issue 2, pp 646–660 | Cite as

Factors Affecting the Coverage Dependence of the Diffusivity of One Metal over the Surface of Another

  • P. Wynblatt
  • D. Chatain
  • A. Ranguis
  • J. P. Monchoux
  • J. Moon
  • S. Garoff
Article

Various factors that can affect the coverage dependence of diffusivity for the case of surface hetero-diffusion have been analyzed. Simple Monte Carlo modeling of the diffusion process shows that diffusivity can either increase or decrease with coverage, depending on whether the interaction between diffusing atoms is repulsive or attractive. The results of more detailed simulations show that these simple predictions are reasonable. If the diffusing species undergoes first-order phase transitions as a function of coverage, then important perturbations of the diffusion profiles will result. One final factor in coverage dependence of diffusivity is considered, namely, the possible effects of coverage on the surface step structure. An analysis of diffusion profiles obtained for the spreading of Bi over Cu(100) shows that the major effects of coverage on diffusivity come about from the presence of phase transitions, and from the inherent coverage dependence of diffusivity in systems with short-range repulsion.

Keywords

bismuth coverage dependence of diffusivity Cu(100) surface surface hetero-diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gomer R. (1990). Rep. Prog. Phys. 53:917CrossRefADSGoogle Scholar
  2. 2.
    Seebauer E.G., Allen C.E. (1995). Prog. Surf. Sci. 49:265CrossRefGoogle Scholar
  3. 3.
    Nauvomets A.G. (2005). Physica A 357:189CrossRefADSGoogle Scholar
  4. 4.
    Cohen C., Girard Y., Leroux-Hugon P., L’Hoir A., Moulin J., Schmaus D. (1993). Europhys. Lett. 24:767ADSGoogle Scholar
  5. 5.
    Prévot G., Cohen C., Moulin J., Schmaus D. (1999). Surf. Sci. 421:364CrossRefGoogle Scholar
  6. 6.
    Moon J., Lowekamp J., Wynblatt P., Garoff S., Suter R.M. (2001). Surf. Sci. 488:73CrossRefGoogle Scholar
  7. 7.
    Moon J., Wynblatt P., Garoff S., Suter R.M. (2004). Surf. Sci. 599:160Google Scholar
  8. 8.
    Monchoux J.P., Chatain D., Wynblatt P. (2006). Surf. Sci. 600:1265CrossRefADSGoogle Scholar
  9. 9.
    Murch G.E., Thorn R.J. (1977). Philos. Mag. 35:493Google Scholar
  10. 10.
    Moon J., Yoon J., Wynblatt P., Garoff S., Suter R.M. (2002). Comput. Mater. Sci. 25:503CrossRefGoogle Scholar
  11. 11.
    Foiles S.M., Baskes M.I., Daw M.S. (1986). Phys. Rev. B 53:7983CrossRefADSGoogle Scholar
  12. 12.
    Crank J. (1956). The Mathematics of Diffusion. Clarendon Press, OxfordMATHGoogle Scholar
  13. 13.
    Y. Adda and J. Philibert, La Diffusion dans les Solides (Institut National des Sciences et Techniques Nucléaires, Saclay, 1966).Google Scholar
  14. 14.
    Meyerheim H.L., Zajonz H., Moritz W., Robinson I.K. (1997). Surf. Sci. 381:L551CrossRefGoogle Scholar
  15. 15.
    Meyerheim H.L., De Santis M., Moritz W., Robinson I.K. (1998). Surf. Sci. 418:295CrossRefGoogle Scholar
  16. 16.
    Plass R., Kellogg G.L. (2000). Surf. Sci. 470:106CrossRefGoogle Scholar
  17. 17.
    Ehrlich G., Hudda F.G. (1966). J. Chem. Phys. 44:1039CrossRefGoogle Scholar
  18. 18.
    Schwoebel R.L., Shipley E.J. (1966). J. Appl. Phys. 37:3682CrossRefADSGoogle Scholar
  19. 19.
    Chatain D., Ghetta V., Wynblatt P. (2004). Interface Sci. 12:7CrossRefGoogle Scholar
  20. 20.
    Chatain D., Wynblatt P., Rohrer G.S. (2005). Acta Mater. 53:4057CrossRefGoogle Scholar
  21. 21.
    van Gastel R., Somfai E., van Saarloos S.B., Frenken J.W.M. (2001). Phys. Rev. Lett. 86:1562CrossRefADSGoogle Scholar
  22. 22.
    Grant M.L., Swartzentruber B.S., Bartelt N.C., Hannon J.B. (2001). Phys. Rev. Lett. 86:4588CrossRefADSGoogle Scholar
  23. 23.
    M. L. Anderson, M. J. D’Amato, P. J. Feibelman and B. S. Swartzentruber, Phys. Rev. Lett. 90:126102/1–4 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • P. Wynblatt
    • 1
  • D. Chatain
    • 2
  • A. Ranguis
    • 2
  • J. P. Monchoux
    • 2
    • 3
  • J. Moon
    • 1
    • 4
  • S. Garoff
    • 5
  1. 1.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghU.S.A.
  2. 2.CRMCN-CNRSMarseille cedex 9France
  3. 3.CEMESToulouse cedex 4France
  4. 4.Electronics and Telecommunication Research InstituteDaejeonKorea
  5. 5.Physics DepartmentCarnegie Mellon UniversityPittsburghU.S.A.

Personalised recommendations