International Journal of Thermophysics

, Volume 27, Issue 1, pp 304–313 | Cite as

Effective Thermal Conductivity of Moist Porous Sintered Nickel Material

  • Songping Mo
  • Peng Hu
  • Jianfeng Cao
  • Zeshao Chen
  • Hanlin Fan
  • Fei Yu

The effective thermal conductivity of capillary structures is an important parameter in the thermal performance analysis of loop heat pipes (LHP). In this paper, the effective thermal conductivity of porous sintered nickel material filled with water, ethanediol, and glycerin were measured by means of the hot disk thermal constant analyzer. The measured data were compared with similar measured data and calculated values from models in the literature. The results indicate that the thermal conductivity of the porous material depends on the thermal conductivity of the fluid, the filled ratio, and the porosity of the material.


effective thermal conductivity hot disk method loop heat pipe (LHP) porous sintered nickel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kiseev V.M., Belonogov A.G. (1998) Proceedings of CPL ’98 International Workshop. El Segundo, California Vol. 4.2, pp. 1–19.Google Scholar
  2. 2.
    M. L. Parker, Modeling of Loop Heat Pipes with Applications to Spacecraft Thermal Control (Ph.D. Thesis, University of Pennsylvania, 2000).Google Scholar
  3. 3.
    Assad A. (1955). A Study of Thermal Conductivity of Fluid Bearing Porous Rocks. University of California, Berkeley, California Ph.D. ThesisGoogle Scholar
  4. 4.
    Chaudary A., Bhandari B. (1968). J. Appl. Research (J. Phys.-D) 1:815CrossRefGoogle Scholar
  5. 5.
    Krupiczka J. (1967). Int. Chem. Eng. 7:122Google Scholar
  6. 6.
    Maxwell J.C. (1954). A Treatise on Electricity and Magnetism, 3rd Ed. Dover, New YorkMATHGoogle Scholar
  7. 7.
    Russell H.W. (1935). J. Am. Ceram. Soc. 18:1CrossRefGoogle Scholar
  8. 8.
    Eucken A., Forsh (1932). Gebiete Ingenieur B3:353Google Scholar
  9. 9.
    Loeb A.L. (1954). J. Am. Ceram. Soc. 37:96Google Scholar
  10. 10.
    Zehner P., Schlunder E.U. (1997). Chem. -Ing. -Tech. 42:933Google Scholar
  11. 11.
    Hsu C.T., Cheng P., Wong K.W. (1995). ASME J. Heat Transfer 117:264CrossRefGoogle Scholar
  12. 12.
    Zeng S.Q., Hunt A.J., Greif R. (1995). ASME J. Heat Transfer 117:1055CrossRefGoogle Scholar
  13. 13.
    Pitchumanim R., Yao S.C. (1991). ASME J. Heat Transfer 113:788CrossRefGoogle Scholar
  14. 14.
    Pitchumanim R. (1999). ASME J Heat Transfer 121:163CrossRefGoogle Scholar
  15. 15.
    Gustafsson S.E. (1991). Rev. Sci. Instrum. 62:797CrossRefADSGoogle Scholar
  16. 16.
    Log T., Gustafsson S.E. (1995). Fire and Materials 19:43CrossRefGoogle Scholar
  17. 17.
    Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G. (1970) Thermal Conductivity of Metallic Elements and Alloys, Thermophysical Properties of Matter. IFI/Plenum, New York, Vol. 1.Google Scholar
  18. 18.
    Touloukian Y.S., Liley P.E., Saxena S.C. (1970) Thermal Conductivity: Nonmetallic Liquids and Gases, Thermophysical Properties of Matter. IFI/Plenum, New York, Vol. 3.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Songping Mo
    • 1
  • Peng Hu
    • 1
  • Jianfeng Cao
    • 2
  • Zeshao Chen
    • 1
  • Hanlin Fan
    • 2
  • Fei Yu
    • 3
  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and Technology of ChinaHefeiP. R. China
  2. 2.Chinese Academy of Space TechnologyBeijingP. R. China
  3. 3.Laboratory of Mechanical and Material ScienceUniversity of Science and Technology of ChinaHefeiP. R. China

Personalised recommendations