International Journal of Thermophysics

, Volume 26, Issue 5, pp 1595–1605

Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7

  • M. J. Assael
  • S. Botsios
  • K. Gialou
  • I. N. Metaxa


The thermal conductivity of polymethyl methacrylate (PMMA) and borosilicate crown glass BK7 has been studied. The transient hot-wire technique has been employed, and measurements cover a temperature range from room temperature up to 350 K for PMMA and up to 500 K for BK7. The technique is applied here in a novel way that minimizes all remaining thermal-contact resistances. This allows the apparatus to operate in an absolute way and with very low uncertainty. The method makes use of a soft silicone paste material between the hot wires and the solid under test. Measurements of the transient temperature rise of the wires in response to an electrical heating step over a period of 20 μs up to 5 s allow an absolute determination of the thermal conductivity of the solid, as well as of the silicone paste. The method is based on a full theoretical model with equations solved by a two-dimensional finite-element method applied to the exact geometry. At the 95% confidence level, the standard deviations of the thermal conductivity measurements are 0.09% for PMMA and 0.16% for BK7, whereas the standard uncertainty of the technique is less than 1.5%.


BK7 borosilicate crown glass PMMA polymethyl methacrylate thermal conductivity transient hot wire 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assael, M. J., Dix, M., Gialou, K., Vozar, L., Wakeham, W. A. 2002Int. J. Thermophys.23615CrossRefGoogle Scholar
  2. 2.
    Assael, M. J., Gialou, K. 2003Int. J. Thermophys.24667CrossRefGoogle Scholar
  3. 3.
    Assael, M. J., Gialou, K. 2003Int. J. Thermophys.241145CrossRefGoogle Scholar
  4. 4.
    Assael, M. J., Gialou, K. 2004Int. J. Thermophys.25397CrossRefGoogle Scholar
  5. 5.
    Guide to the Expression of Uncertainty in Measurement (International Organisation for Standardisation, Genova, 1995).Google Scholar
  6. 6.
    R. P. Tye and D. R. Salmon, “Thermal Conductivity of Reference Materials: Pyrex 7740 and Polymethyl Methacrylate,” NPL report(2003).Google Scholar
  7. 7.
    Rudtsch, S., Hammerschmidt, U. 2004Int. J. Thermophys.251475CrossRefGoogle Scholar
  8. 8.
    S. Rudtsch, R. Stosch, and U. Hammerschmidt, in Proc. 16th Europ. Conf. Thermophys. Props., London (2002).Google Scholar
  9. 9.
    Ramires, M. L. V., Nietode Castro, C. A., Perkins, R. A., Nagasaka, Y., Nagashima, A., Assael, M. J., Wakeham, W. A. 2000J. Phys. Chem. Ref. Data29133CrossRefGoogle Scholar
  10. 10.
    Boumaza, T., Redgrove, J. 2003Int. J. Thermophys.24501Google Scholar
  11. 11.
    Kubičár, Ĺ., Bohac, V. 2002High Temp. High Press34135CrossRefGoogle Scholar
  12. 12.
    N. Lockmuller, J. Redgrove, and Ĺ. Kubičár, High Temp. High Press. 35/36:127 (2003/2004).Google Scholar
  13. 13.
    Kubičár, Ĺ., Vretenár, V., Hammerschmidt, U. 2005Int. J. Thermophys.26507Google Scholar
  14. 14.
    H. P. Ebert, ZAE Bayern. 31 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. J. Assael
    • 1
  • S. Botsios
    • 1
  • K. Gialou
    • 1
  • I. N. Metaxa
    • 1
  1. 1.Chemical Engineering DepartmentAristotle UniversityThessalonikiGreece

Personalised recommendations