International Journal of Thermophysics

, Volume 26, Issue 5, pp 1495–1514 | Cite as

Effect of Dissolved Air on the Density and Refractive Index of Water



The effect of dissolved air on the density and the refractive index of liquid water is studied from 0 to 50° C. The density effect is calculated from the best available values of Henry’s constants and partial molar volumes for the components of air; the results are in agreement with some previous experimental studies, but not others. The refractive-index effect is calculated as a function of wavelength from the same information, plus the refractivities of the atmospheric gases. Experimental measurements of the refractive-index effect are reported at both visible and ultraviolet wavelengths; the measured and calculated values are in reasonable agreement. The magnitude of the refractive-index change, while small, is several times larger than a previous estimate in the literature.


air calibration density refractive index water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Union of Pure and Applied Chemistry, Recommended Reference Materials for the Realization of Physicochemical Properties, K. N. Marsh, ed. (Blackwell Scientific, New York, 1987).Google Scholar
  2. 2.
    Burnett, J.H., Kaplan, S.G. 2004J. Microlith. Microfab.Microsys368CrossRefGoogle Scholar
  3. 3.
    Smith, B. 2004OE Magazine422JulyGoogle Scholar
  4. 4.
    Lauder, I. 1959Aust. J. Chem1240Google Scholar
  5. 5.
    Millero, F.J., Emmet, R.T. 1976J. Mar. Res3415Google Scholar
  6. 6.
    Watanabe, H., Iizuka, K. 1981Jpn. J. Appl. Phys201979CrossRefGoogle Scholar
  7. 7.
    Watanabe, H., Iizuka, K. 1985Metrologia2119[Erratum: ibid. 22:115 (1986)]CrossRefGoogle Scholar
  8. 8.
    Bignell, N. 1983Metrologia1957CrossRefGoogle Scholar
  9. 9.
    Bignell, N. 1986Metrologia232071987CrossRefGoogle Scholar
  10. 10.
    Girard G., Coarasa M.-J., in Precision Measurement and Fundamental Constants II, NBS Special Publication 617, B. N. Taylor and W. D. Phillips, eds. (U.S. Government Printing Office, Washington, 1984), p. 453.Google Scholar
  11. 11.
    Kell, G.S. 1977J. Phys. Chem. Ref. Data61109Google Scholar
  12. 12.
    Tilton, L.W., Taylor, J.K. 1938J. Res. Nat. Bur. Stand.20419Google Scholar
  13. 13.
    Giacomo, P. 1982Metrologia1833CrossRefGoogle Scholar
  14. 14.
    Lemmon E.W., McLinden M.O., and Huber M.L., Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 7.0 (National Institute of Standards and Technology, Gaithersburg, Maryland, 2002).Google Scholar
  15. 15.
    Rettich, T.R., Battino, R., Wilhelm, E. 1984J. Solution Chem.13335CrossRefGoogle Scholar
  16. 16.
    Rettich, T.R., Battino, R., Wilhelm, E. 2000J. Chem Thermodyn.321145CrossRefGoogle Scholar
  17. 17.
    Rettich, T.R., Battino, R., Wilhelm, E. 1992J. Solution Chem.21987CrossRefGoogle Scholar
  18. 18.
    Krause, D., Benson, B.B. 1989J. Solution Chem.18823CrossRefGoogle Scholar
  19. 19.
    Harned, H.S., Davis, R.,Jr. 1943J. Am. Chem. Soc.652030CrossRefGoogle Scholar
  20. 20.
    Carroll, J.J., Slupsky, J.D., Mather, A.E. 1991J. Phys Chem. Ref. Data201201Google Scholar
  21. 21.
    Wagner, W., Pruss, A. 1993J. Phys. Chem. Ref. Data22783Google Scholar
  22. 22.
    Bignell, N. 1984J. Phys. Chem.885409CrossRefGoogle Scholar
  23. 23.
    Zhou, T., Battino, R. 2001J. Chem. Eng. Data46331CrossRefGoogle Scholar
  24. 24.
    Tiepel, E.W., Gubbins, K.E. 1972J. Phys. Chem.763044CrossRefGoogle Scholar
  25. 25.
    Moore, J.C., Battino, R., Rettich, T.R., Handa, Y.P., Wilhelm, E. 1982J. Chem. Eng. Data2722CrossRefGoogle Scholar
  26. 26.
    Hnědkovský, L., Wood, R.H., Majer, V. 1996J. Chem Thermodyn.28125CrossRefGoogle Scholar
  27. 27.
    Shock, E.L., Helgeson, H.C. 1988Geochim. Cosmochim. Acta522009CrossRefGoogle Scholar
  28. 28.
    Marcus, Y. 1997Ion PropertiesMarcel DekkerNew YorkGoogle Scholar
  29. 29.
    Wagner, W., Pruß, A. 2002J. Phys. Chem. Ref. Data31387CrossRefGoogle Scholar
  30. 30.
    Harvey A.H., Peskin A.P., and Klein S.A., NIST/ASME Steam Properties, NIST Standard Reference Database 10, Version 2.2 (National Institute of Standards and Technology, Gaithersburg, Maryland, 2000).Google Scholar
  31. 31.
    Tanaka, M., Girard, G., Davis, R., Peuto, A., Bignell, N. 2001Metrologia38301CrossRefGoogle Scholar
  32. 32.
    Harvey, A.H., Gallagher, J.S., Levelt Sengers, J.M.H. 1998J. Phys. Chem. Ref. Data27761Google Scholar
  33. 33.
    Birch, K.P. 1991J. Opt. Soc. Am. A8647Google Scholar
  34. 34.
    Griesmann, U., Burnett, J.H. 1999Opt. Lett.241699Google Scholar
  35. 35.
    Smith, P.L., Huber, M.C.E, Parkinson, W.H. 1976Phys Rev. A131422CrossRefGoogle Scholar
  36. 36.
    Old, J.G., Gentili, K.L., Peck, E.R. 1971J. Opt. Soc Am.6189Google Scholar
  37. 37.
    Bideau-Mehu, A., Guern, Y., Abjean, R., Johannin-Gilles, A. 1973Opt. Commun.9432CrossRefGoogle Scholar
  38. 38.
    Peck, E.R., Fisher, D.J. 1964J. Opt. Soc. Am.541362Google Scholar
  39. 39.
    Peck, E.R., Khanna, B.N. 1966J. Opt. Soc. Am.561059Google Scholar
  40. 40.
    Kaplan S.G., Burnett J.H., Appl. Opt., in press.Google Scholar
  41. 41.
    Battino, R., Banzhof, M., Bogan, M., Wilhelm, E. 1971Anal Chem.43806CrossRefGoogle Scholar
  42. 42.
    Park, S.Y., Kim, J.Y., Lee, J.B., Esler, M.B., Davis, R.S., Wielgosz, R.I. 2004Metrologia41387CrossRefGoogle Scholar
  43. 43.
    Picard, A., Fang, H., Gläser, M. 2004Metrologia41396CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Physical and Chemical Properties DivisionNational Institute of Standards and TechnologyBoulderU.S.A
  2. 2.Optical Technology DivisionNational Institute of Standards and TechnologyGaithersburgU.S.A
  3. 3.Atomic Physics DivisionNational Institute of Standards and TechnologyGaithersburgU.S.A

Personalised recommendations