International Journal of Thermophysics

, Volume 26, Issue 4, pp 1137–1149 | Cite as

Electrical Resistivity and Thermodynamic Properties of Dense Tungsten Plasma

  • A. W. DeSilva
  • A. D. RakhelEmail author


Tungsten wires immersed in a water bath were rapidly heated by a pulse current. The electrical resistivity as a function of the plasma density, which varied as the plasma column expanded, and as a function of internal energy was measured. In order to specify the parameters of the experiments to approach homogeneity of the physical quantities across the column, one-dimensional (1D) magneto-hydrodynamic (MHD) simulations of the pulse Joule heating dynamics were conducted. As a result, the resistivity of dense tungsten plasma along with the complete set of thermodynamic quantities (pressure, density, and internal energy) were directly measured without using any equation of state (EOS) model of tungsten. Present results indicate that the dependence of the resistivity of tungsten on internal energy along isochors is flat at high densities, but acquires a strong negative slope at a density which is 8–16 times lower than the normal solid density when the internal energy is in a range of 5–14 kJ · g−1.


dense metal plasma electrical resistivity exploding wire technique metal–nonmetal transition MHD simulations tungsten 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V.E Fortov,I.T Iakubov Physics of Non-ideal Plasmas (World Scientific Publishing Co. Pte. Ltd., Singapore, New Jersey, London, Hong Kong, 2000).Google Scholar
  2. Spielman, R. B., Deeney, C., Douglas, M. R., Chandler, G. A, Cuneo, M. E., Nash, T. J., Porter, J. L., Ruggles, L. E, Sanford, T. W. L., Stygar, W. A., Struve, K. W., Matzen, M. K., McDaniel, D. H., Peterson, D. L., Hammer, J. H. 2000Plasma Phys. Control. Fusion42157CrossRefGoogle Scholar
  3. DeSilva, A. W., Katsouros, J. D. 1999Int. J. Thermophys.201267CrossRefGoogle Scholar
  4. Saleem, S., Haun, J., Kunze, H.-J. 2001Phys. Rev. E64056403CrossRefGoogle Scholar
  5. Rakhel, A. D., Korobenko, V. N., Savvatimskiy, A. I, Fortov, V. E. 2004Int. J. Thermophys.251203CrossRefGoogle Scholar
  6. U.Seydel, W. Fucke, H.Wadle, Die Bestimmung thermophysikalischer Daten flüssiger hochschmelzender Metalle mit schnellen Pulsaufheizexperimenten (Verlag Dr. Peter Mannhold, Düsseldorf, 1980).Google Scholar
  7. Berthault, A., Arles, L., Matricon, J. 1986Int. J. Thermophys.7167CrossRefGoogle Scholar
  8. Rakhel, A. D., Kloss, A., Hess, H. 2002Int. J. Thermophys.231369CrossRefGoogle Scholar
  9. Korobenko, V. N., Rakhel, A. D., Savvatimskiy, A. I, Fortov, V. E. 2002Plasma Physics Reports281008CrossRefGoogle Scholar
  10. Walsh, J. M., Rice, M. H. 1957J. Chem. Phys26816CrossRefGoogle Scholar
  11. Bakanova, A. A., Zubarev, V. N, Sutulov, Yu. N., Trunin, R. F. 1975Zh. Eksp. Teor. Fiz.681099[Sov. Phys. JETP 41:544 (1975)].Google Scholar
  12. Grigor’ev, I. S.Meilikhov, E. Z. eds. 1991Physical Quantities (Handbook)EnergoatomizdatMoscowGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute for Research in Electronics and Applied PhysicsUniversity of MarylandCollege ParkU.S.A
  2. 2.Institute for High Energy DensitiesMoscowRussia

Personalised recommendations