International Journal of Thermophysics

, Volume 27, Issue 2, pp 494–506 | Cite as

Density and Thermal Expansion of Liquid Ag–Cu and Ag–Au Alloys



The densities of liquid Cu–Ag and Ag–Au alloys were measured using the technique of electromagnetic levitation. This technique involves producing shadow images of the sample from which the volume is calculated by an image processing algorithm. The density and thermal expansion of several alloys and the pure elements copper, gold, and silver are measured at temperatures above their melting points. In addition, they were investigated as a function of either the copper or gold concentration. It was found from data analysis that the densities can be derived from a linear combination of the molar volumes of the elements and that thermodynamic excess quantities are negligibly small.


Cu–Au and Ag–Au alloys density electromagnetic levitation thermal expansion thermophysical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brillo J., Egry I., Giffard H.S., Patti A. (2004). Int. J. Thermophys. 25:1535CrossRefGoogle Scholar
  2. 2.
    Krause W., Sauerwald F. (1929). Z. Anorg. Allg. Chem. 181:347CrossRefGoogle Scholar
  3. 3.
    Gebhardt E., Dorner S. (1951). Z. Metallkd. 42:353Google Scholar
  4. 4.
    Lüdecke C., Lüdecke D. (2000). Thermodynamik. Springer, Heidelberg p. 506Google Scholar
  5. 5.
    Vegard L. (1921). Z. Phys. 5:17CrossRefADSGoogle Scholar
  6. 6.
    Brillo J., Egry I. (2003). Int. J. Thermophys. 24:1155CrossRefGoogle Scholar
  7. 7.
    Brillo J., Egry I. (2004). Z. Metallkd. 95:691Google Scholar
  8. 8.
    Massalski T.B. (1986). Binary Alloy Phase Diagrams. American Society for Metals, Materials Park, OhioGoogle Scholar
  9. 9.
    Krishnan S., Hansen G.P., Hauge R.H., Margrave J.L. (1990). High Temp. Sci. 29:17Google Scholar
  10. 10.
    Gorges E. (1996). Bestimmung der Dichte und Oberflächenspannung von levitierten flüssigen Metallegiergungen am Beispiel des Systems Kupfer-Nickel. (Ph. D. Thesis, Rheinisch-Westfälische-Technische Hochschule, Aachen Germany)Google Scholar
  11. 11.
    Saito A., Watanabe S. (1971). Nipp. Kinz. Gakk. 35:554Google Scholar
  12. 12.
    El-Mehairy A.E., Ward R.G. (1963). Trans. Met. Soc. AIME 227:1226Google Scholar
  13. 13.
    Martin-Garin L., Gomez M., Bedon P., Desre P. (1975). J. Less-Common Metals 41:65CrossRefGoogle Scholar
  14. 14.
    Matuyama Y. (1937). Sci. Rep. Tohoku Imp. Univ. 20:8Google Scholar
  15. 15.
    Khilya G.P., Yu, Ivachshenko N., Eremenko V.N. (1975). Izv. Akad. Nauk SSSR Met. 6:87Google Scholar
  16. 16.
    Pearson W.B. (1967). Handbook of Lattice Spacing and Structure of Metals. Pergamon, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Deutsches Zentrum für Luft- und RaumfahrtInstitut für RaumsimulationKölnGermany

Personalised recommendations