Advertisement

International Journal of Thermophysics

, Volume 25, Issue 5, pp 1567–1584 | Cite as

Analysis of Photothermal Characterization of Layered Materials – Design of Optimal Experiments

  • K. D. Cole
Article

Abstract

In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green's function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials, and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any material with spatial variation of thermal properties.

functionally graded material Green's functions optimal experiment photothermal thermal properties. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. Ishiguro, A. Makino, N. Araki, and N. Noda, Int.J.Thermophys. 14: 101 (1993).Google Scholar
  2. 2.
    K. S. Kim and N. Noda, J.Therm.Stresses 24: 457 (2001).Google Scholar
  3. 3.
    Z. H. Jin and G. H. Paulino, Int.J.Fracture 107: 73 (2001).Google Scholar
  4. 4.
    A. Sutradhar, G. H. Paulino, and L. J. Gray, Eng.Anal.Boundary Elem. 26: 110 (2002).Google Scholar
  5. 5.
    K. S. Kim and N. Noda, JSME Int.J.Ser.A 44: 31 (2001).Google Scholar
  6. 6.
    M. Ferrari, F. Rooney, and J. C. Nadeau, Mat.Sci.Forum 308–311: 989 (1999).Google Scholar
  7. 7.
    Y. Obata and N. Noda, Arch.Appl.Mech. 66: 581 (1996).Google Scholar
  8. 8.
    A. Makino and N. Noda, Int.J.Thermophys. 15: 729 (1994).Google Scholar
  9. 9.
    A. Makino and N. Noda, Mat.Sci.Forum 308–311: 896 (1999).Google Scholar
  10. 10.
    A. Mandelis, Diffusion-Wave Fields, Mathematical Methods and Green 's Functions (Springer, New York, 2001).Google Scholar
  11. 11.
    W. A. McGahan and K. D. Cole, J.Appl.Phys. 72: 1362 (1992).Google Scholar
  12. 12.
    K. D. Cole and W. A. McGahan, J.Heat Trans. 155: 767 (1993).Google Scholar
  13. 13.
    H. Hu, X. Wang, and X. Xu, J.Appl.Phys. 86: 3953 (1999).Google Scholar
  14. 14.
    J. V. Beck and K. J. Arnold, Parameter Estimation (Wiley, New York, 1977).Google Scholar
  15. 15.
    R. Taktak, J. V. Beck, and E. P. Scott, Int.J.Heat Mass Trans. 36: 2977 (1993).Google Scholar
  16. 16.
    K. J. Dowding and B. F. Blackwell, J.Heat Trans. 123: 1 (2001).Google Scholar
  17. 17.
    K. D. Cole, J.Thermophys.Heat Trans. 18: 289 (2004).Google Scholar
  18. 18.
    A. Mandelis, J.Appl.Phys. 78: 647 (1995).Google Scholar
  19. 19.
    J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green 's Functions (Hemisphere, New York, 1992).Google Scholar
  20. 20.
    P. E. Crittenden and K. D. Cole, Int.J.Heat Mass Trans. 45: 3583 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • K. D. Cole
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of Nebraska–LincolnNebraskaU.S.A

Personalised recommendations