International Journal of Thermophysics

, Volume 25, Issue 5, pp 1535–1550 | Cite as

Thermophysical Properties of Undercooled Liquid Cu–Ni Alloys

  • G. Lohöfer
  • J. Brillo
  • I. Egry


Experimental data for the surface tension, density, and electrical resistivity of undercooled liquid Cu–Ni alloys of different compositions and at different temperatures are presented. The experiments were performed in facilities that combine the containerless positioning method of electromagnetic levitation with contactless measurement techniques. Although Cu–Ni alloys are rather simple from a chemical point of view, the data for density, surface tension, and electrical resistivity unveil the occurrence of short-range atomic order processes in the melt. For the density this manifests in a composition-dependent excess volume, for the surface tension in smaller values due to an increased surface segregation, and for the electrical resistivity in a deviation from the linear temperature dependence at low temperatures.

containerless processing density electrical resistivity liquid Cu–Ni alloys short-range atomic ordering surface tension. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. B. Massalski, Binary Alloy Phase Diagrams (Americans Society of Metals, Materials Park, Ohio, 1986).Google Scholar
  2. 2.
    S. Srikanth and K. T. Jacob, Mat.Sci.Technol. 5: 427 (1989).Google Scholar
  3. 3.
    P. R. Sahm, I. Egry, and T. Volkmann, Schmelze, Erstarrung, Grenz.äche (Vieweg, Wiesbaden, 1999).Google Scholar
  4. 4.
    S. Y. Shiraishi and R. G. Ward, Can.Met.Quat. 3: 117 (1964).Google Scholar
  5. 5.
    A. Saito and S. Watanabe, Nipp.Kinz.Gakk. 35: 554 (1971).Google Scholar
  6. 6.
    S. K. Chung, D. B. Thiessen, and W. K. Rhim, Rev.Sci.Instrum. 67: 3175 (1996).Google Scholar
  7. 7.
    J. Brillo and I. Egry, Z.Metallkd. 95: 691 (2004).Google Scholar
  8. 8.
    J. Brillo and I. Egry, Int.J.Thermophys. 24: 1155 (2003).Google Scholar
  9. 9.
    S. Schneider, I. Egry, and I. Seyhan, Int.J.Thermophys. 23: 1241 (2002).Google Scholar
  10. 10.
    E. Gorges and I. Egry, J.Mater.Sci. 30: 2517 (1995).Google Scholar
  11. 11.
    E. Gorges, Bestimmung der Dichte und Ober.ächenspannung von levitierten.¨ussigen Met-allegierungen am Beispiel des Systems Kupfer–Nickel (Ph. D. Thesis, RWTH Aachen, Aachen, 1996).Google Scholar
  12. 12.
    Ya. A. Kraftmakher, Meas.Sci.Technol. 2: 253 (1991).Google Scholar
  13. 13.
    J. E. Enderby, S. Ansell, S. Krishnan, D. L. Price, and M.-L. Saboungi, Appl.Phys.Lett. 71: 116 (1997).Google Scholar
  14. 14.
    T. Richardsen and G. Lohöfer, Int.J.Thermophys. 20: 1029 (1999).Google Scholar
  15. 15.
    T. Richardsen, Ein induktives Messverfahren zur Bestimmung der elektrischen Leitfähigkeit an unterk ¨uhlten Metallschmelzen (Shaker, Aachen, 2001).Google Scholar
  16. 16.
    S. Takeuchi and H. Endo, Trans.JIM 3: 35 (1962).Google Scholar
  17. 17.
    T. Richardsen, G. Lohöfer, and I. Egry, Int.J.Thermophys. 23: 1207 (2002).Google Scholar
  18. 18.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (University Press, Cambridge, 1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • G. Lohöfer
    • 1
  • J. Brillo
    • 1
  • I. Egry
    • 1
  1. 1.Institute of Space SimulationGerman Aerospace CenterGermany

Personalised recommendations