Advertisement

International Journal of Primatology

, Volume 40, Issue 4–5, pp 470–495 | Cite as

Habitat Use in a Population of the Northern Muriqui (Brachyteles hypoxanthus)

  • Marlon Lima
  • Sérgio L. Mendes
  • Karen B. StrierEmail author
Article
  • 85 Downloads

Abstract

Habitat loss and fragmentation are known to restrict the movements of primates, including their ability to expand their home ranges. These effects are especially strong at high densities, where home range overlap can result in high rates of agonistic intergroup encounters over range defense. We investigated habitat use and range defense in a population of northern muriquis (Brachyteles hypoxanthus) at the Reserva Particular do Patrimônio Natural – Feliciano Miguel Abdala, in Minas Gerais, Brazil from August 2010 to July 2013. The four groups in this isolated population used 878 ha of forest, with home ranges exhibiting high interannual fidelity in location and low intergroup overlap. Core areas represented 13–29% of the respective home ranges and, except for one group, showed only moderate to low interannual fidelity in successive years. Of 130 intergroup encounters recorded in 2010–2011, significantly more occurred in core areas that overlapped with the range of another group than in areas of home range overlap or areas used exclusively by one group. Daily path lengths of the one group used in assessing range defensibility varied little (1075–1132 m) across years and relative to home range diameter did not meet the criteria for defensibility. However, the occurrence of independent subgroups, combined with a mean monthly detection distance of 242 m, provides strong evidence of range defensibility. These findings point to the importance of fission–fusion dynamics for intergroup range defense, particularly in primates living at high densities in fragmented habitats.

Keywords

Core area Daily path length Home range Intergroup encounter Ranging patterns Territoriality 

Notes

Acknowledgments

Permission to conduct this research in Brazil was granted by the Brazilian government (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq), the Abdala Family, and the Sociedade Preserve Muriqui. Field work during the 2010–2013 study period was supported by grants to KBS from the National Science Foundation (BCS-0921013), the University of Wisconsin – Madison, Conservation International, and the Margot Marsh Biodiversity Foundation and by CNPq (Proc. 479054/2008-8) to SLM. Analyses were conducted in the Laboratório de Biologia da Conservação de Vertebrados, LBCV) of SLM at the Universidade Federal de Espírito Santo (UFES). We thank A. Ferreira, T. S. Cardoso, C. B. Possamai, I. Inforzato, R. Filho, P. Campos, A. B. Morais, M.S. Cristo, and F. R. Fernandes for their contributions to the data presented here. We also thank Prof. Milton Cesar Ribeiro and Bernardo Brandão Niebuhr dos Santos of the Laboratório de Ecologia Espacial e Conservação (LEEC) – Universidade Estadual de São Paulo (UNESP) and Prof. André Luiz N. Coelho of the Laboratório de Cartografia Geográfica e Geotecnologias (LCGGEO) – UFES for help with the spatial analyses. The Sociedade para a Preservação do Muriqui and Conservação Internacional – Brasil provided essential infrastructure and administrative support during the field work. The data analyses were conducted by ML while supported by the Programa de Pós-Graduação em Ciências Biológicas – Biologia Animal – UFES and this study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. We are grateful to many colleagues who contributed ideas and suggestions, especially Drs. C. B. Possamai, F. R. de Melo, and S. Van Belle. We also thank our editor, Dr. Júlio César Bicca-Marques, and two anonymous reviewers for their extremely helpful comments on earlier versions of this manuscript, and the editor-in-chief, Jo Setchell, for her suggestions.

Author Contributions

ML, SLM and KBS conceived and designed the study. ML conducted fieldwork. ML and KBS analyzed the data. ML and KBS wrote the manuscript. SLM provided editorial advice and analytical support in his laboratory.

Supplementary material

10764_2019_98_MOESM1_ESM.docx (196 kb)
ESM 1 (DOCX 196 kb)

References

  1. Ab’Saber, A. N. (1977). Os domínios morfoclimáticos da América do Sul. Geomorfologia, 52, 1–23.Google Scholar
  2. Agostini, I., Holzmann, I., & Di Bitetti, M. S. (2010). Ranging patterns of two syntopic howler monkey species (Alouatta guariba and A. caraya) in northeastern Argentina. International Journal of Primatology, 31(3), 363–381.Google Scholar
  3. Aguilar-Melo, A. R., Calmé, S., Smith-Aguilar, S. E., & Ramos-Fernandez, G. (2018). Fission–fusion dynamics as a temporally and spatially flexible behavioral strategy in spider monkeys. Behavioral Ecology and Sociobiology, 72(9), 150.Google Scholar
  4. Asensio, N., Korstjens, A. H., & Aureli, F. (2009). Fissioning minimizes ranging costs in spider monkeys: A multiple-level approach. Behavioral Ecology and Sociobiology, 63(5), 649–659.Google Scholar
  5. Asensio, N., Schaffner, C. M., & Aureli, F. (2012). Variability in core areas of spider monkeys (Ateles geoffroyi) in a tropical dry forest in Costa Rica. Primates, 53(2), 147–156.PubMedGoogle Scholar
  6. Asensio, N., Schaffner, C. M., & Aureli, F. (2015). Quality and overlap of individual core areas are related to group tenure in female spider monkeys. American Journal of Primatology, 77(7), 777–785.PubMedGoogle Scholar
  7. Asensio, N., José-Domínguez, J. M., & Dunn, J. C. (2018). Socioecological factors affecting range defensibility among howler monkeys. International Journal of Primatology, 39(1), 90–104.Google Scholar
  8. Aureli, F., & Schaffner, C. M. (2007). Aggression and conflict management at fusion in spider monkeys. Biology Letters, 3(2), 147–149.PubMedPubMedCentralGoogle Scholar
  9. Aureli, F., Schaffner, C. M., Boesch, C., Bearder, S. K., Call, J., et al (2008). Fission–fusion dynamics. Current Anthropology, 49(4), 627–654.Google Scholar
  10. Bartlett, T. Q., Light, L. E., & Brockelman, W. Y. (2016). Long-term home range use in white-handed gibbons (Hylobates lar) in Khao Yai National Park, Thailand. American Journal of Primatology, 78(2), 192–203.PubMedGoogle Scholar
  11. Barton, R. A., Byrne, R. W., & Whiten, A. (1996). Ecology, feeding competition and social structure in baboons. Behavioral Ecology and Sociobiology, 38(5), 321–329.Google Scholar
  12. Bates, B. C. (1970). Territorial behavior in primates: A review of recent field studies. Primates, 11(3), 271–284.Google Scholar
  13. Boubli, J. P., Tokuda, M., Possamai, C., Fidelis, J., Guedes, D., & Strier, K. B. (2005). Dinâmica intergrupal de muriquis-do-norte, Brachyteles hypoxanthus, na Estação Biológica de Caratinga, MG: o comportamento de uma unidade de machos (all male band) no vale do Jaó. In Livro de Resumos XI Congresso Brasileiro de Primatologia, Vol. 41.Google Scholar
  14. Boubli, J. P., Couto-Santos, F. R., & Strier, K. B. (2011). Structure and floristic composition of one of the last forest fragments containing the critically endangered northern Muriqui (Brachyteles hypoxanthus, Primates). Ecotropica, 17, 53–69.Google Scholar
  15. Brown, J. L. (1964). The evolution of diversity in avian territorial systems. The Wilson Bulletin, 76, 160–169.Google Scholar
  16. Brown, M. (2013). Food and range defence in group-living primates. Animal Behaviour, 85(4), 807–816.Google Scholar
  17. Brown, J. L., & Orians, G. H. (1970). Spacing patterns in mobile animals. Annual Review of Ecology and Systematics, 1(1), 239–262.Google Scholar
  18. Burt, W. R. (1943). Territoriality and home range concepts as applied to mammals. Journal of Mammalogy, 24, 346–352.Google Scholar
  19. Caillaud, D., Ndagijimana, F., Giarrusso, A. J., Vecellio, V., & Stoinski, T. S. (2014). Mountain gorilla ranging patterns: Influence of group size and group dynamics. American Journal of Primatology, 76, 730–746.PubMedGoogle Scholar
  20. Calenge, C. (2006). The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516–519.Google Scholar
  21. Caselli, C. B., Mennill, D. J., Bicca-Marques, J. C., & Setz, E. Z. F. (2014). Vocal behavior of black-fronted titi monkeys (Callicebus nigrifrons): Acoustic properties and behavioral contexts of loud calls. American Journal of Primatology, 76(8), 788–800.PubMedGoogle Scholar
  22. Ceccarelli, E., Negrín, A. R., Coyohua-Fuentes, A., Canales-Espinosa, D., & Dias, P. A. D. (2018). An exploration of the factors influencing the spatial behavior of mantled howler monkeys (Alouatta palliata). International Journal of Primatology, 40(2), 197–213.Google Scholar
  23. Chapman, C. A., & Chapman, L. J. (2000). Interdemic variation in mixed-species association patterns: Common diurnal primates of Kibale National Park, Uganda. Behavioral Ecology and Sociobiology, 47(3), 129–139.Google Scholar
  24. Chapman, C. A., Wrangham, R. W., & Chapman, L. J. (1995). Ecological constraints on group size: An analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology, 36, 59–70.Google Scholar
  25. Clutton-Brock, T. H., & Harvey, P. H. (1977). Primate ecology and social organization. Journal of Zoology, 183, 1–39.Google Scholar
  26. Crockett, C. M., & Eisenberg, J. F. (1987). Howlers: Variations in group size and demography. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 54–68). Chicago: University of Chicago Press.Google Scholar
  27. Crofoot, M. C., Gilby, I. C., Wikelski, M. C., & Kays, R. W. (2008). Interaction location outweighs the competitive advantage of numerical superiority in Cebus capucinus intergroup contests. Proceedings of the National Academy of Sciences of the USA, 105(2), 577–581.PubMedGoogle Scholar
  28. Di Bitetti, M. S. (2001). Home-range use by the tufted capuchin monkey (Cebus apella nigritus) in a subtropical rainforest of Argentina. Journal of Zoology, 253, 33–45.Google Scholar
  29. Di Fiore, A., & Suarez, S. A. (2007). Route-based travel and shared routes in sympatric spider and woolly monkeys: Cognitive and evolutionary implications. Animal Cognition, 10, 317–329.PubMedGoogle Scholar
  30. Dias, L. G., & Strier, K. B. (2000). Agonistic encounters between muriquis, Brachyteles arachnoides hypoxanthus (Primates, Cebidae), and other animals at the Estacao Biológica de Caratinga, Minas Gerais, Brazil. Neotropical Primates, 8, 138–141.Google Scholar
  31. Dias, L. G., & Strier, K. B. (2003). Effects of group size on ranging patterns in Brachyteles arachnoids hypoxanthus. International Journal of Primatology, 24(2), 209–221.Google Scholar
  32. Eisenberg, J. F. (1980). The density and biomass of tropical mammals. In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: An evolutionary-ecological perspective (pp. 35–55). Sunderland: Sinauer Associates.Google Scholar
  33. Ellis, K., & Di Fiore, A. (2019). Variation in space use and social cohesion within and between four groups of woolly monkeys (Lagothrix lagotricha poeppigii) in relation to fruit availability and mating opportunities at the Tiputini Biodiversity Station, Ecuador. Movement ecology of Neotropical forest mammals (pp. 141–171). Cham: Switzerland: Springer.Google Scholar
  34. ESRI (2012). ArcGIS desktop: Release 10. Redlands: Environmental Systems Research Institute.Google Scholar
  35. Gehring, T. M., & Swihart, R. K. (2004). Home range and movements of long-tailed weasels in a landscape fragmented by agriculture. Journal of Mammalogy, 85(1), 79–86.Google Scholar
  36. Gomez-Posada, C., Martínez, J., Giraldo, P., & Kattan, G. H. (2007). Density, habitat use, and ranging patterns of red howler monkeys in a Colombian Andean forest. Neotropical Primates, 14(1), 2–10.Google Scholar
  37. Harris, T. R. (2006). Between-group contest competition for food in a highly folivorous population of black and white colobus monkeys (Colobus guereza). Behavioral Ecology and Sociobiology, 61(2), 317–329.Google Scholar
  38. Hartwell, K. S., Notman, H., & Pavelka, M. S. (2018). Seasonal and sex differences in the fission–fusion dynamics of spider monkeys (Ateles geoffroyi yucatanensis) in Belize. Primates, 59(6), 531–539.PubMedGoogle Scholar
  39. Instituto Nacional de Meteorologia (INMET) (2018). http://www.inmet.gov.br (Accessed October 10, 2018).
  40. Jacob, A. A., & Rudran, R. (2004). Radiotelemetria em estudos populacionais. In L. Cullen Jr., R. Rudran, & C. Valladares-Padua (Eds.), Métodos de estudos em biologia da conservação e manejo da vida silvestre (pp. 285–341). Curitiba: Editora da Universidade Federal do Paraná.Google Scholar
  41. Janson, C. H., & Goldsmith, M. L. (1995). Predicting group size in primates: Foraging costs and predation risks. Behavioral Ecology, 6(3), 326–336.Google Scholar
  42. José-Domínguez, J. M., Savini, T., & Asensio, N. (2015). Ranging and site fidelity in northern pigtailed macaques (Macaca leonina) over different temporal scales. American Journal of Primatology, 77(8), 841–853.PubMedGoogle Scholar
  43. Jung, L., Mourthe, I., Grelle, C. E., Strier, K. B., & Boubli, J. P. (2015). Effects of local habitat variation on the behavioral ecology of two sympatric groups of brown howler monkey (Alouatta clamitans). PLoS One, 10(7), e0129789.PubMedPubMedCentralGoogle Scholar
  44. Kelt, D. A., Kelly, P. A., Phillips, S. E., & Williams, D. F. (2014). Home range size and habitat selection of reintroduced Sylvilagus bachmani riparius. Journal of Mammalogy, 95(3), 516–524.Google Scholar
  45. Kernohan, B. J., Jenks, J. A., & Naugle, D. E. (2002). Localized movements and site fidelity of white-tailed deer in the northern Great Plains. Prairie Naturalist, 34, 1–12.Google Scholar
  46. Kumara, H. N., Singh, M., Sharma, A. K., Santhosh, K., & Pal, A. (2014). Impact of forest fragment size on between-group encounters in lion-tailed macaques. Primates, 55(4), 543–548.PubMedGoogle Scholar
  47. Laver, P. N., & Kelly, M. J. (2008). A critical review of home range studies. The Journal of Wildlife Management, 72(1), 290–298.Google Scholar
  48. Lowen, C., & Dunbar, R. I. M. (1994). Territory size and defendability in primates. Behavioral Ecology and Sociobiology, 35(5), 347–354.Google Scholar
  49. Lynch Alfaro, J. W. (2007). Subgrouping patterns in a group of wild Cebus apella nigritus. International Journal of Primatology, 28(2), 271–289.Google Scholar
  50. Marasinghe, M. S. L. R. P., Dayawansa, N. D. K., & De Silva, R. P. (2015). Seasonal changes in home range and habitat use of elephants in southern and north-central provinces of Sri Lanka. Tropical Agricultural Research, 26(2), 248.Google Scholar
  51. Minta, S. C. (1992). Tests of spatial and temporal interaction among animals. Ecological Applications, 2(2), 178–188.PubMedGoogle Scholar
  52. Mitani, J. C., & Rodman, P. S. (1979). Territoriality: The relation of ranging pattern and home range size to defendability, with an analysis of territoriality among primate species. Behavioral Ecology and Sociobiology, 5(3), 241–251.Google Scholar
  53. Mosser, A., & Packer, C. (2009). Group territoriality and the benefits of sociality in the African lion, Panthera leo. Animal Behaviour, 78(2), 359–370.Google Scholar
  54. Mourthé, I. M. C., Guedes, D., Fidelis, J., Boubli, J. P., Mendes, S. L., & Strier, K. B. (2007). Ground use by northern muriquis (Brachyteles hypoxanthus). American Journal of Primatology, 69, 706–712.PubMedGoogle Scholar
  55. Murray, C. M., Gilby, I. C., Mane, S. V., & Pusey, A. E. (2008). Adult male chimpanzees inherit maternal ranging patterns. Current Biology, 18(1), 20–24.PubMedGoogle Scholar
  56. Nascimento, A. T. A., Schmidlin, L. A., Valladares-Padua, C. B., Matushima, E. R., & Verdade, L. M. (2011). A comparison of the home range sizes of mainland and island populations of black-faced lion tamarins (Leontopithecus caissara) using different spatial analysis. American Journal of Primatology, 73(11), 1114–1126.PubMedGoogle Scholar
  57. Ordóñez-Gómez, J. D., Santillan-Doherty, A. M., & Hammerschmidt, K. (2019). Acoustic variation of spider monkey (Ateles geoffroyi) contact calls is related to caller isolation and affects listeners’ responses. PLoS One, 14(4), e0213914.PubMedPubMedCentralGoogle Scholar
  58. Ostro, L. E., Silver, S. C., Koontz, F. W., Young, T. P., & Horwich, R. H. (1999). Ranging behavior of translocated and established groups of black howler monkeys (Alouatta pigra) in Belize, Central America. Biological Conservation, 87(2), 181–190.Google Scholar
  59. Palacios, E., & Rodriguez, A. (2001). Ranging pattern and use of space in a group of red howler monkeys (Alouatta seniculus) in a southeastern Colombian rainforest. American Journal of Primatology, 55(4), 233–251.PubMedGoogle Scholar
  60. Peres, C. A. (1989). Costs and benefits of territorial defense in wild golden lion tamarins, Leontopithecus rosalia. Behavioral Ecology and Sociobiology, 25(3), 227–233.Google Scholar
  61. Powell, R. A. (2000). Animal home ranges and territories and home range estimators. In L. Boitani & T. K. Fuller (Eds.), Research techniques in animal ecology: Controversies and consequences (pp. 65–110). New York: Columbia University Press.Google Scholar
  62. Pride, E. R., Felantsoa, D., Randriamboavonjy, T., & Randriambelona, R. (2006). Resource defense in Lemur catta: The importance of group size. In A. Jolly (Ed.), Ringtailed lemur biology: Lemur catta in Madagascar (pp. 208–232). Developments in Primatology: Progress and Prospects. New York: Springer Science+Business Media.Google Scholar
  63. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Access 23 April 2018
  64. Ramos-Fernández, G. (2005). Vocal communication in a fission–fusion society: Do spider monkeys stay in touch with close associates? International Journal of Primatology, 26(5), 1077–1092.Google Scholar
  65. Ramos-Fernandez, G., Aguilar, S. E. S., Schaffner, C. M., Vick, L. G., & Aureli, F. (2013). Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico. PLoS One, 8(5), e62813.PubMedPubMedCentralGoogle Scholar
  66. Robbins, M. M., Gray, M., Fawcett, K. A., Nutter, F. B., Uwingeli, P., Mburanumwe, I., Kagoda, E., Basabose, A., Stoinski, T. S., Cranfield, M. R., Byamukama, J., Spelman, L. H., & Robbins, A. M. (2011). Extreme conservation leads to recovery of the Virunga mountain gorillas. PLoS One, 6(6), e19788.PubMedPubMedCentralGoogle Scholar
  67. Scarry, C. J., & Tujague, M. P. (2012). Consequences of lethal intragroup aggression and alpha male replacement on intergroup relations and home range use in tufted capuchin monkeys (Cebus apella nigritus). American Journal of Primatology, 74(9), 804–810.PubMedGoogle Scholar
  68. Schuler, K. L., Schroeder, G. M., Jenks, J. A., & Kie, J. G. (2014). Ad hoc smoothing parameter performance in kernel estimates of GPS-derived home ranges. Wildlife Biology, 20, 259–266.Google Scholar
  69. Seaman, D. E., & Powell, R. A. (1990). Identifying patterns and intensity of home range use. Bears: Their Biology and Management, 8, 243–249.Google Scholar
  70. Seiler, N., Boesch, C., Mundry, R., Stephens, C., & Robbins, M. M. (2017). Space partitioning in wild, non-territorial mountain gorillas: The impact of food and neighbours. Royal Society Open Science, 4(11), 170720.PubMedPubMedCentralGoogle Scholar
  71. Slater, K., Barrett, A., & Brown, L. R. (2018). Home range utilization by chacma baboon (Papio ursinus) troops on Suikerbosrand nature reserve, South Africa. PLoS One, 13(3), e0194717.PubMedPubMedCentralGoogle Scholar
  72. Strier, K. B. (1987). Ranging behavior of woolly spider monkeys. International Journal of Primatology, 8, 575–591.Google Scholar
  73. Strier, K. B. (1989). Effects of patch size on feeding associations in muriquis (Brachyteles arachnoides). Folia Primatologica, 52(1–2), 70–77.Google Scholar
  74. Strier, K. B. (2014). Northern muriqui monkeys: Behavior, demography, and conservation. In J. Yamagiwa & L. Karczmarski (Eds.), Primates and cetaceans: Field research and conservation of complex mammalian societies (pp. 233–247). Primatology Monographs. Tokyo: Springer.Google Scholar
  75. Strier, K. B. (2017). What does variation in primate behavior mean? Yearbook of Physical Anthropology, 162(S63), 4–14.Google Scholar
  76. Strier, K. B., & Ives, A. R. (2012). Unexpected demography in the recovery of an endangered primate population. PLoS One, 7(9), e44407.PubMedPubMedCentralGoogle Scholar
  77. Strier, K. B., & Mendes, S. L. (2012). The northern muriqui (Brachyteles hypoxanthus): Lessons on behavioral plasticity and population dynamics from a critically endangered species. In P. M. Kappeler & D. P. Watts (Eds.), Long-term field studies of primates (pp. 125–140). Berlin: Springer.Google Scholar
  78. Strier, K. B., Mendes, F. D. C., Rímoli, J., & Rímoli, A. O. (1993). Demography and social structure in one group of muriquis (Brachyteles arachnoides). International Journal of Primatology, 14, 513–526.Google Scholar
  79. Strier, K. B., Boubli, J. P., Possamai, C. B., & Mendes, S. L. (2006). Population demography of northern muriquis (Brachyteles hypoxanthus) at the Estação biológica de Caratinga/Reserva particular do Patrimônio natural – Feliciano Miguel Abdala, Minas Gerais, Brazil. American Journal of Physical Anthropology, 130(2), 227–237.PubMedGoogle Scholar
  80. Tabacow, F. P., Mendes, S. L., & Strier, K. B. (2009). Spread of a terrestrial tradition in an arboreal primate. American Anthropologist, 111(2), 238–249.Google Scholar
  81. Tokuda, M., Boubli, J. P., Mourthé, I. M. C., Izar, P., Possamai, C. B., & Strier, K. B. (2014). Males follow females during fissioning of a group of northern muriquis. American Journal of Primatology, 76(6), 529–538.PubMedGoogle Scholar
  82. Tumenta, P. N., Van’t Zelfde, M., Croes, B. M., Buij, R., Funston, P. J., et al (2013). Changes in lion (Panthera leo) home range size in Waza National Park, Cameroon. Mammalian Biology–Zeitschrift für Säugetierkunde, 78(6), 461–469.Google Scholar
  83. Umapathy, G., & Kumar, A. (2000). The demography of the lion-tailed macaque (Macaca silenus) in rain forest fragments in the Anamalai Hills, South India. Primates, 41, 119–126.PubMedGoogle Scholar
  84. Van Belle, S., Porter, A., Fernandez-Duque, E., & Di Fiore, A. (2018). Ranging behavior and potential for territoriality in equatorial sakis (Pithecia aequatorialis) in Amazonian Ecuador. American Journal of Physical Anthropology, 167(4), 701–712.PubMedGoogle Scholar
  85. Warren, R. D., & Crompton, R. H. (1997). A comparative study of the ranging behaviour, activity rhythms and sociality of Lepilemur edwardsi (Primates, Lepilemuridae) and Avahi occidentalis (Primates, Indriidae) at Ampijoroa, Madagascar. Journal of Zoology, 243(2), 397–415.Google Scholar
  86. Wartmann, F. M., Juárez, C. P., & Fernandez-Duque, E. (2014). Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of northern Argentina. International Journal of Primatology, 35(5), 919–939.Google Scholar
  87. White, G. C., & Garrott, R. A. (1990). Analysis of radio-tracking data. San Diego: Academic Press.Google Scholar
  88. Whitehead, J. (1989). The effect of the location of a simulated intruder on responses to long-distance vocalizations of mantled howling monkeys, Alouatta palliata palliata. Behaviour, 108, 73–103.Google Scholar
  89. Willems, E. P., Hellriegel, B., & van Schaik, C. P. (2013). The collective action problem in primate territory economics. Proceedings of the Royal Society of London B: Biological Sciences, 280(1759), 20130081.Google Scholar
  90. Wilson, M. L., Kahlenberg, S. M., Wells, M., & Wrangham, R. W. (2012). Ecological and social factors affect the occurrence and outcomes of intergroup encounters in chimpanzees. Animal Behaviour, 83(1), 277–291.Google Scholar
  91. Worton, B. J. (1987). A review of models of home range for animal movement. Ecological Modelling, 38(3), 277–298.Google Scholar
  92. Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70(1), 164–168.Google Scholar
  93. Wronski, T. (2005). Home-range overlap and spatial organization as indicators for territoriality among male bushbuck (Tragelaphus scriptus). Journal of Zoology, 266(3), 227–235.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Biologia Animal, Departamento de Ciências BiológicasUniversidade Federal de Espírito SantoVitóriaBrazil
  2. 2.Instituto Nacional da Mata AtlânticaSanta TeresaBrazil
  3. 3.Department of AnthropologyUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations