International Journal of Primatology

, Volume 40, Issue 2, pp 214–243 | Cite as

Craniofacial Shape and Nonmetric Trait Variation in Hybrids of the Japanese Macaque (Macaca fuscata) and the Taiwanese Macaque (Macaca cyclopis)

  • Ceridwen BoelEmail author
  • Darren Curnoe
  • Yuzuru Hamada


It has become apparent that natural hybridization is far more common and may play a much greater role in evolution than has historically been recognized. The skeletal morphology of hybrid primates is notoriously variable and difficult to predict. Indeed, before the advent of genetic sequencing techniques, many wild hybrid populations went undetected. Though many species of primates are now known to hybridize naturally and are likely to have done so for millions of years, anthropogenic alterations to the environment are increasingly restricting or altering primate species ranges and contact zones and driving hybridization between populations that may otherwise never have come into contact. The case of hybridizing Japanese and Taiwanese macaques (Macaca fuscata and Macaca cyclopis) is an excellent example of this, as these two island species could not have come into contact without human interference. Here we apply 3D geometric morphometrics and nonmetric trait analysis to the crania and dentition of hybrid macaques (N = 70) and their parental species, M. fuscata (N = 57) and M. cyclopis (N = 51). The exploration of 3D shape variation identifies mildly transgressive morphology in the hybrids and a general tendency toward the M. fuscata morphotype overall, but less variability in the hybrid morphotype than has been identified in previous studies of primate hybrids. We also identify a small number of nonmetric traits that differentiate the hybrids from the parental species, although the power of these traits to distinguish between groups is weak and their relationship with hybridity is unclear. We conclude that the relatively short divergence time between the parent species is likely to help explain the observed differences in hybrid morphotype, and that further exploration of the relationship between degree of evolutionary divergence and hybrid morphology may help us to better explain and predict hybrid morphology in other taxa.


Craniofacial shape Developmental abnormalities Hybrid phenotype Hybridization Macaca cyclopis Macaca fuscata 



This research was conducted as part of PhD research undertaken at the University of New South Wales, supported by an Australian Postgraduate Award and Research Excellence Award (UNSW School of Biological, Earth and Environmental Sciences). This research was chiefly funded by the Kyoto University Primate Research Institute Cooperative Research Program (awarded to C. Boel). We would like to thank Associate Professor Yoshi Kawamoto and Dr. Tsuyoshi Ito of the Kyoto University Primate Research Institute (KU-PRI) for providing access to genetic data and CT scans relevant to the hybrid sample, Professor Toshio Mouri for his generous guidance and assistance during data collection at the KU-PRI, and the Working Group of Hybrid Macaques who studied the demography and caught hybrids and Taiwanese macaques. We would also like to acknowledge the effort of the editor and reviewers, and thank them for the valuable contributions they have made to this manuscript.

Supplementary material

10764_2019_81_MOESM1_ESM.docx (219 kb)
ESM 1 (DOCX 219 kb)


  1. Ackermann, R. R. (2010). Phenotypic traits of primate hybrids: Recognizing admixture in the fossil record. Evolutionary Anthropology, 19(6), 258–270.CrossRefGoogle Scholar
  2. Ackermann, R. R., & Bishop, J. M. (2010). Morphological and molecular evidence reveals recent hybridization between gorilla taxa. Evolution, 64(1), 271–290.CrossRefPubMedGoogle Scholar
  3. Ackermann, R. R., Rogers, J., & Cheverud, J. M. (2006). Identifying the morphological signatures of hybridization in primate and human evolution. Journal of Human Evolution, 51(6), 632–645.CrossRefPubMedGoogle Scholar
  4. Ackermann, R. R., Brink, J. S., Vrahimis, S., De Klerk, B., & Klerk, B. (2010). Hybrid wildebeest (Artiodactyla: Bovidae) provide further evidence for shared signatures of admixture in mammalian crania. South African Journal of Science, 106(11–12).
  5. Ackermann, R. R., Schroeder, L., Rogers, J., & Cheverud, J. M. (2014). Further evidence for phenotypic signatures of hybridization in descendant baboon populations. Journal of Human Evolution, 76(C), 54–62.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aguiar, L. M., Mellek, D. M., Abreu, K. C., Boscarato, T. G., Bernardi, I. P., et al (2007). Sympatry between Alouatta caraya and Alouatta clamitans and the rediscovery of free-ranging potential hybrids in southern Brazil. Primates, 48(3), 245–248.CrossRefPubMedGoogle Scholar
  7. Arnold, M. L. (1997). Natural hybridization and evolution. Oxford: Oxford University Press.Google Scholar
  8. Arnold, M. L., & Meyer, A. (2006). Natural hybridization in primates: one evolutionary mechanism. Zoology, 109(4), 261–276.CrossRefPubMedGoogle Scholar
  9. Arnold, M. L., Sapir, Y., & Martin, N. H. (2008). Genetic exchange and the origin of adaptations: prokaryotes to primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1505), 2813–2820.CrossRefGoogle Scholar
  10. Baranwal, V. K., Mikkilineni, V., Zehr, U. B., Tyagi, A. K., & Kapoor, S. (2012). Heterosis: Emerging ideas about hybrid vigour. Journal of Experimental Botany, 63(18), 6309–6314.CrossRefPubMedGoogle Scholar
  11. Bauchau, V. (1988). Non-metrical variation in wild mammals: A bibliography. Mammal Review, 18(4), 195–200.CrossRefGoogle Scholar
  12. Berry, A. C. (1975). Factors affecting the incidence of non-metrical skeletal variants. Journal of Anatomy, 120(3), 519–535.PubMedPubMedCentralGoogle Scholar
  13. Bicca-Marques, J. C., Prates, H. M., Aguiar, F. R. C., & Jones, C. B. (2008). Survey of Alouatta caraya, the black-and-gold howler monkey, and Alouatta guariba clamitans, the brown howler monkey, in a contact zone, State of Rio Grande do Sul, Brazil: Evidence for hybridization. Primates, 49(4), 246–252.CrossRefPubMedGoogle Scholar
  14. Bookstein, F. L. (1991). Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  15. Burke, J., & Arnold, M. (2001). Genetics and the fitness of hybrids. Annual Review of Genetics, 35, 31–52.CrossRefPubMedGoogle Scholar
  16. Bynum, N. (2002). Morphological variation within a macaque hybrid zone. American Journal of Physical Anthropology, 118(1), 45–49.CrossRefPubMedGoogle Scholar
  17. Bynum, E. L., Bynum, D. Z., & Supriatna, J. (1997). Confirmation and location of the hybrid zone between wild populations of Macaca tonkeana and Macaca hecki in Central Sulawesi, Indonesia. American Journal of Primatology, 43(3), 181–209.CrossRefPubMedGoogle Scholar
  18. Charpentier, M. J. E., Tung, J., Altmann, J., & Alberts, S. C. (2008). Age at maturity in wild baboons: Genetic, environmental and demographic influences. Molecular Ecology, 17, 2026–2040.CrossRefPubMedGoogle Scholar
  19. Charpentier, M. J. E., Fontaine, M. C., Cherel, E., Renoult, J. P., Jenkins, T., et al (2012). Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population. Molecular Ecology, 21(3), 715–731.CrossRefPubMedGoogle Scholar
  20. Chen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 15(2), 57–71.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cheverud, J. M., & Routman, E. J. (1995). Epistasis and its contribution to genetic variance components. Genetics, 139(3), 1455–1461.PubMedPubMedCentralGoogle Scholar
  22. Chiarelli, B. (1973). Check-list of catarrhina primate hybrids. Journal of Human Evolution, 2(4), 259–355.CrossRefGoogle Scholar
  23. Chu, J. H., Lin, Y. S., & Wu, H. Y. (2007). Evolution and dispersal of three closely related macaque species, Macaca mulatta, M. cyclopis, and M. fuscata, in the eastern Asia. Molecular Phylogenetics and Evolution, 43(2), 418–429.CrossRefPubMedGoogle Scholar
  24. Combes, M. C., Hueber, Y., Dereeper, A., Rialle, S., Herrera, J. C., & Lashermes, P. (2015). Regulatory divergence between parental alleles determines gene expression patterns in hybrids. Genome Biology and Evolution, 7(4), 1110–1121.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cortés-Ortiz, L. (2017). Hybridization and hybrid zones. In The international encyclopedia of primatology. Wiley Online Library.Google Scholar
  26. Delmore, K. E., Louis, E. E., & Johnson, S. E. (2011). Morphological characterization of a brown lemur hybrid zone (Eulemur rufifrons × E. cinereiceps). American Journal of Physical Anthropology, 145(1), 55–66.CrossRefPubMedGoogle Scholar
  27. Delmore, K. E., Brenneman, R. A., Lei, R., Bailey, C. A., Brelsford, A., et al (2013). Clinal variation in a brown lemur (Eulemur spp.) hybrid zone: Combining morphological, genetic and climatic data to examine stability. Journal of Evolutionary Biology, 26(8), 1677–1690.CrossRefPubMedGoogle Scholar
  28. Dryden, L., & Mardia, K. V. (1998). Statistical shape analysis. Hoboken: Wiley.Google Scholar
  29. Dunbar, R. I. M., & Dunbar, P. (1974). On hybridization between Theropithecus gelada and Papio anubis in the wild. Journal of Human Evolution, 3(3), 187–192.CrossRefGoogle Scholar
  30. Eichel, K. A., & Ackermann, R. R. (2016). Variation in the nasal cavity of baboon hybrids with implications for late Pleistocene hominins. Journal of Human Evolution, 94, 134–145.CrossRefPubMedGoogle Scholar
  31. Engleka, K. A., Lang, D., Brown, C. B., Antonucci, N. B., & Epstein, J. A. (2008). Neural crest formation and craniofacial development. In C. J. Epstein, R. P. Erickson, & A. Wynshaw-Boris (Eds.), Inborn errors of development: The molecular basis of clinical disorders of morphogenesis (pp. 69–78). Oxford Monographs on Medical Genetics. Oxford: Oxford University Press.Google Scholar
  32. Epstein, C. J. (2008). Human malformations and their genetic basis. In C. J. Epstein, R. P. Erickson, & A. Wynshaw-Boris (Eds.), Inborn errors of development: The molecular basis of clinical disorders of morphogenesis (pp. 3–8). Oxford Monographs on Medical Genetics. Oxford: Oxford University Press.Google Scholar
  33. Evans, B. J., Supriatna, J., & Melnick, D. J. (2001). Hybridization and population genetics of two macaque species in Sulawesi, Indonesia. Evolution, 55(8), 1686–1702.CrossRefPubMedGoogle Scholar
  34. Falconer, D. S. (1989). Introduction to quantitative genetics (3rd ed.). New York: Longman.Google Scholar
  35. Fooden, J. (1964). Rhesus and crab-eating macaques: Intergradation in Thailand. Science, 143(3604), 363–364.CrossRefPubMedGoogle Scholar
  36. Fuzessy, L. F., Silva, I. D. O., Malukiewicz, J., Silva, F. F. R., Pônzio, M. D. C., et al (2014). Morphological variation in wild marmosets (Callithrix penicillata and C. geoffroyi) and their hybrids. Evolutionary Biology, 41(3), 480–493.CrossRefGoogle Scholar
  37. Gligor, M., Ganzhorn, J. U., Rakotondravony, D., Ramilijaona, O. R., Razafimahatratra, E., et al (2009). Hybridization between mouse lemurs in an ecological transition zone in southern Madagascar. Molecular Ecology, 18(3), 520–533.CrossRefPubMedGoogle Scholar
  38. Groszmann, M., Greaves, I. K., Fujimoto, R., James Peacock, W., & Dennis, E. S. (2013). The role of epigenetics in hybrid vigour. Trends in Genetics, 29(12), 684–690.CrossRefPubMedGoogle Scholar
  39. Gruneberg, H. (1963). The pathology of development: A study of inherited skeletal disorders in animals. New York: Wiley.Google Scholar
  40. Hamada, Y., Urasopon, N., Hadi, I., & Malaivijitnond, S. (2006). Body size and proportions and pelage color of free-ranging Macaca mulatta from a zone of hybridization in northeastern Thailand. International Journal of Primatology, 27(2), 497–513.CrossRefGoogle Scholar
  41. Hamada, Y., Suryobroto, B., Goto, S., & Malaivijitnond, S. (2008). Morphological and body color variation in Thai Macaca fascicularis fascicularis north and south of the Isthmus of Kra. International Journal of Primatology, 29(5), 1271–1294.CrossRefGoogle Scholar
  42. Hamada, Y., Yamamoto, A., Kunimatsu, Y., Tojima, S., Mouri, T., & Kawamoto, Y. (2012). Variability of tail length in hybrids of the Japanese macaque (Macaca fuscata) and the Taiwanese macaque (Macaca cyclopis). Primates, 53(4), 397–411.CrossRefPubMedGoogle Scholar
  43. Hamada, Y., San, A. M., & Malaivijitnond, S. (2016). Assessment of the hybridization between rhesus (Macaca mulatta) and long-tailed macaques (M. fascicularis) based on morphological characters. American Journal of Physical Anthropology, 159(2), 189–198.CrossRefPubMedGoogle Scholar
  44. Hanihara, T., & Ishida, H. (2001a). Frequency variations of discrete cranial traits in major human populations. I. Supernumerary ossicle variations. Journal of Anatomy, 198(6), 689–706.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hanihara, T., & Ishida, H. (2001b). Frequency variations of discrete cranial traits in major human populations. III. Hyperostotic variations. Journal of Anatomy, 199(3), 251–272.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hanihara, T., & Ishida, H. (2001c). Frequency variations of discrete cranial traits in major human populations. IV. Vessel and nerve related variations. Journal of Anatomy, 199(3), 273–287.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hauser, G., & DeStefano, G. F. (1989). Epigenetic variants of the human skull. Stuttgart: Schweizerbart.Google Scholar
  48. Howells, W. W. (1973). Cranial variation in man: A study by multivariate anaysis of patterns of difference among recent human populations. Papers of the Peabody Museum of Archaeology and Ethnology, Vol. 67 (pp. 1–259). Cambridge: Harvard University Press.Google Scholar
  49. Ito, T., Kawamoto, Y., Hamada, Y., & Nishimura, T. D. (2015). Maxillary sinus variation in hybrid macaques: Implications for the genetic basis of craniofacial pneumatization. Biological Journal of the Linnean Society, 115(2), 333–347.CrossRefGoogle Scholar
  50. Jiang, J., Yu, J., Li, J., Li, P., Fan, Z., Niu, L., Deng, J., Yue, B., Li, J., & Stanyon, R. (2016). Mitochondrial genome and nuclear markers provide new insight into the evolutionary history of macaques. PLoS One, 11(5), e0154665.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jolly, C. J., & Disotell, T. R. (1997). Intergeneric hybrid baboons. International Journal of Primatology, 18(4), 597–627.CrossRefGoogle Scholar
  52. Kaur, J., Choudhry, R., Raheja, S., & Dhissa, N. C. (2012). Non-metric traits of the skull and their role in anthropological studies. Journal of Morphological Sciences, 29(4), 189–194.Google Scholar
  53. Kawamoto, Y. (2005). NRAMP1 polymorphism in a hybrid population between Japanese and Taiwanese macaques in Wakayama, Japan. Primates, 46(3), 203–206.CrossRefPubMedGoogle Scholar
  54. Kawamoto, Y., Shirai, H., Araki, S., & Kyoko, M. (1999). A case of mixed typing of Japanese monkey and Taiwan monkey in Wakayama Prefecture (translated). Primate Research, 15, 53–60.CrossRefGoogle Scholar
  55. Kawamoto, Y., Ohsawa, H., Nigi, H., Maruhashi, T., Maekawa, S., et al (2001). Genetic assessment of a hybrid population between Japanese and Taiwan macaques in Wakayama Prefecture. Primate Research, 17(1), 13–24.CrossRefGoogle Scholar
  56. Kelaita, M. A., & Cortés-Ortiz, L. (2013). Morphological variation of genetically confirmed Alouatta pigra × A. palliata hybrids from a natural hybrid zone in Tabasco, Mexico. American Journal of Physical Anthropology, 150(2), 223–234.CrossRefPubMedGoogle Scholar
  57. Keller, C., Roos, C., Groeneveld, L. F., Fischer, J., & Zinner, D. (2010). Introgressive hybridization in southern African baboons shapes patterns of mtDNA variation. American Journal of Physical Anthropology, 142(1), 125–136.PubMedGoogle Scholar
  58. Klingenberg, C. P. (1998). Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biological Reviews, 73, 79–123.CrossRefPubMedGoogle Scholar
  59. Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357.CrossRefPubMedGoogle Scholar
  60. Klingenberg, C. P. (2015). Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry, 7(2), 843–934.CrossRefGoogle Scholar
  61. Klingenberg, C. P., & McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution, 52(5), 1363.CrossRefPubMedGoogle Scholar
  62. Klingenberg, C. P., & Monteiro, L. R. (2005). Distances and directions in multidimensional shape spaces: Implications for morphometric applications. Systematic Biology, 54(4), 678–688.CrossRefPubMedGoogle Scholar
  63. Korey, K. A. (1980). The incidence of bilateral nonmetric skeletal traits: A reanalysis of sampling procedures. American Journal of Physical Anthropology, 53(1), 19–23.CrossRefPubMedGoogle Scholar
  64. Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20(5), 229–237.CrossRefGoogle Scholar
  65. Malaivijitnond, S., & Hamada, Y. (2008). Current situation and status of long-tailed macaques (Macaca fascicularis) in Thailand. The Natural History Journal of Chulalongkorn University, 8(2), 185–204.Google Scholar
  66. Malaivijitnond, S., Sae-Low, W., & Hamada, Y. (2008). The human-ABO blood groups of free-ranging long-tailed macaques (Macaca fascicularis) and parapatric rhesus macaques (M. mulatta) in Thailand. Journal of Medical Primatology, 37(1), 31–37.PubMedGoogle Scholar
  67. Manzi, G. (1996). Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: An exploratory study on the Italian Neandertals. Journal of Human Evolution, 30(6), 511–527.CrossRefGoogle Scholar
  68. Manzi, G., Gracia, A., & Arsuaga, J. L. (2000). Cranial discrete traits in the Middle Pleistocene humans from Sima de los Huesos (Sierra de Atapuerca, Spain). Does hypostosis represent any increase in “ontogenetic stress” along the Neanderthal lineage? Journal of Human Evolution, 38, 425–446.CrossRefPubMedGoogle Scholar
  69. Markarjan, D. S., Isakov, E. P., & Kondakov, G. I. (1974). Intergeneric hybrids of the lower (42-chromosome) monkey species of the Sukhumi monkey colony. Journal of Human Evolution, 3(3), 247–250.CrossRefGoogle Scholar
  70. Mayr, E. (1963). Animal species and evolution. Cambridge: Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  71. Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.CrossRefGoogle Scholar
  72. Mitteroecker, P., Gunz, P., & Bookstein, F. L. (2005). Heterochrony and geometric morphometrics: A comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evolution & Development, 7(3), 244–258.CrossRefGoogle Scholar
  73. Moore, C. M., Janish, C., Eddy, C. A., Hubbard, G. B., Leland, M. M., & Rogers, J. (1999). Cytogenetic and fertility studies of a rheboon, rhesus macaque (Macaca mulatta) × baboon (Papio hamadryas) cross: Further support for a single karyotype nomenclature. American Journal of Physical Anthropology, 110(2), 119–127.CrossRefPubMedGoogle Scholar
  74. Osada, N., Uno, Y., Mineta, K., Kameoka, Y., Takahashi, I., & Terao, K. (2010). Ancient genome-wide admixture extends beyond the current hybrid zone between Macaca fascicularis and M. mulatta. Molecular Ecology, 19(14), 2884–2895.CrossRefPubMedGoogle Scholar
  75. Pastorini, J., Zaramody, A., Curtis, D. J., Nievergelt, C. M., & Mundy, N. I. (2009). Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs. BMC Evolutionary Biology, 9, 32.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Perizonius, W. R. K. (1979). Non-metric cranial traits: Sex difference and age dependence. Journal of Human Evolution, 8(7), 679–684.CrossRefGoogle Scholar
  77. R Development Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  78. Rohlf, F. J. (1990). Morphometrics. Annual Review of Ecology and Systematics, 21, 299–316.CrossRefGoogle Scholar
  79. Rohlf, F. J. (1999). Shape statistics: procrustes superimpositions and tangent spaces. Journal of Classification, 16(2), 197–223.CrossRefGoogle Scholar
  80. Schillaci, M. A., Froehlich, J. W., Supriatna, J., & Jones-Engel, L. (2005). The effects of hybridization on growth allometry and craniofacial form in Sulawesi macaques. Journal of Human Evolution, 49(3), 335–369.CrossRefPubMedGoogle Scholar
  81. Schwenk, K., Brede, N., & Streit, B. (2008). Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1505), 2805–2811.CrossRefGoogle Scholar
  82. Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19(4), 198–207.CrossRefGoogle Scholar
  83. Shurtliff, Q. R. (2013). Mammalian hybrid zones: a review. Mammal Review, 43(1), 1–21.CrossRefGoogle Scholar
  84. Slice, D. E., Bookstein, F. L., Marcus, L. F., Rohlf, F. J. (1996). Appendix I: a glossary for geometric morphometrics. Advances in Morphometrics, (part 1), 531–552.Google Scholar
  85. Sperber, G. H. (1989). Craniofacial Embryology. London: John Wright.Google Scholar
  86. Tomkins, J. L., & Kotiaho, J. S. (2001). Fluctuating asymmetry. In eLS. Wiley Online Library.Google Scholar
  87. Tosi, A. J., Morales, J. C., & Melnick, D. J. (2000). Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Molecular Phylogenetics and Evolution, 17(2), 133–144.CrossRefPubMedGoogle Scholar
  88. Trinkaus, E. (1978). Bilateral asymmetry of human skeletal non-metric traits. American Journal of Physical Anthropology, 49(3), 315–318.CrossRefPubMedGoogle Scholar
  89. Tung, J., Charpentier, M. J. E., Garfield, D. A., Altmann, J., & Alberts, S. C. (2008). Genetic evidence reveals temporal change in hybridization patterns in a wild baboon population. Molecular Ecology, 17(8), 1998–2011.CrossRefPubMedGoogle Scholar
  90. Wang, Y., Naumann, U., Wright, S. T., & Warton, D. I. (2012). Mvabund: An R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution, 3(3), 471–474.CrossRefGoogle Scholar
  91. Wang, Y., Naumann, U., Eddelbuettel, D. & Warton, D. (2018). mvabund: Statistical Methods for Analysing Multivariate Abundance Data. R package version 3.13.1.
  92. White, T. D., & Folkens, P. (2000). Human osteology (2nd ed.). San Diego: Academic Press.Google Scholar
  93. Wolpert, L., Jessel, T., Lawrence, P., Meyerowitz, E., Robertson, E., & Smith, J. (2007). Principles of development (3rd ed.). New York: Oxford University Press.Google Scholar
  94. Wyner, Y. M., Johnson, S. E., Stumpf, R. M., & Desalle, R. (2002). Genetic assessment of a white-collared × red-fronted lemur hybrid zone at Andringitra, Madagascar. American Journal of Primatology, 57(2), 51–66.CrossRefPubMedGoogle Scholar
  95. Yamagiwa, J. (2010). Research history of Japanese macaques in Japan. In N. Nakagawa, M. Nakamichi, & H. Sigiura (Eds.), The Japanese macaques. New York: Springer Science+Business Media.Google Scholar
  96. Zinner, D., Groeneveld, L. F., Keller, C., & Roos, C. (2009). Mitochondrial phylogeography of baboons (Papio spp.): Indication for introgressive hybridization? BMC Evolutionary Biology, 9, 83.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zinner, D., Arnold, M. L., & Roos, C. (2011). The strange blood: Natural hybridization in primates. Evolutionary Anthropology, 20(3), 96–103.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Palaeontology, Geobiology and Earth Archives Research CentreUniversity of New South Wales SydneySydneyAustralia
  2. 2.Evolutionary Morphology Section, Primate Research InstituteKyoto UniversityInuyamaJapan

Personalised recommendations