Blood Biochemical Reference Intervals for Free-Ranging Olive Baboons (Papio anubis) in Kenya

  • Mathew Mutinda
  • Margaret C. CrofootEmail author
  • Jennifer C. KishbaughEmail author
  • Lee-Ann C. Hayek
  • Dawn Zimmerman
  • Devin A. Tunseth
  • Suzan Murray


Biochemical reference intervals are important for assessing the health of target species and populations by identifying abnormalities in key blood parameters. Although reference intervals have been established for baboons in captivity, the lack of data from free-ranging individuals makes it difficult to interpret the results of their blood chemistry panels or to assess and monitor the health of wild baboon populations. The goal of this study was therefore to establish serum biochemical reference intervals for free-ranging olive baboons (Papio anubis) in Kenya. We evaluated 14 biochemical parameters from 28 baboons sampled at the Mpala Research Center, Nanyuki, Kenya. Reference intervals obtained from this wild population were comparable to those from captive baboon populations. Alkaline phosphatase (ALP) and phosphorus levels differed significantly among age classes; both were higher in subadult and juvenile baboons than in adults. However, none of the components of the blood biochemistry panel differed significantly between the sexes. The reference intervals we report provide a baseline for the evaluation and treatment of free-ranging olive baboons and provide context for interpreting the biochemical profiles of captive individuals.


Chemical immobilization Health status Primate Serum chemistry 



We thank Kenya National Science and Technology Council, the Kenyan Wildlife Service, and the Mpala Research Centre for permission to conduct this research (permit #: NCST/RCD/12B/012/26B). We thank M. Wikelski, E. Bermingham, D. Rubenstein and M. Kinnaird for logistical support, and R. Kays, R. Lessnau, S. Alavi, J. Nairobi, R. Nelson, H. Nelson, M. Ngila, J. Halkano, and J. Kiseme for help with animal capture. We acknowledge funding from the NSF (IOS-EAGER-1250895; III-1514174), the Max Planck Institute for Ornithology, the Smithsonian Tropical Research Institute, and Princeton University. Dr. Joanna Setchell and two anonymous reviewers provided helpful feedback and suggestions on a previous version of this manuscript. M. C. Crofoot and S. Murray conceived this study. M. Mutinda, M. C. Crofoot, D. Zimmerman, and S. Murray conducted fieldwork and collected samples; S. Murray and D. Zimmerman analyzed samples. L. C. Hayek and J. C. Kishbaugh analyzed the data. D. A. Tunseth, M. Mutinda, D. Zimmerman, and M. C. Crofoot wrote the manuscript; all other authors provided editorial advice.


  1. Brenner, D., Lewbart, G., Stebbins, M., & Herman, D. W. (2002). Health survey of wild and captive bog turtles (Clemmys Muhlenbergii) in North Carolina and Virginia. Journal of Zoo and Wildlife Medicine, 33(4), 311–316.CrossRefGoogle Scholar
  2. Farine, D. R., Strandburg-Peshkin, A., Couzin, I. D., Berger-Wolf, T. Y., & Crofoot, M. C. (2017). Individual variation in local interaction rules can explain emergent patterns of spatial organization in wild baboons. Proceedings of the Royal Society of London B: Biological Sciences, 284, 20162243.CrossRefGoogle Scholar
  3. Fox, M., Brieva, C., Moreno, C., MacWilliams, P., & Thomas, C. (2008). Hematologic and serum biochemistry reference values in wild-caught white-footed tamarins (Saguinus leucopus) housed in captivity. Journal of Zoo and Wildlife Medicine, 39(4), 548–557.CrossRefGoogle Scholar
  4. Foy, H., Kondi, A., & Mbaya, V. (1965). Hematologic and biochemical indices in the East African baboon. Blood, 26(5), 682–686.PubMedGoogle Scholar
  5. Friedrichs, K. R., Harr, K. E., Freeman, K. P., Szladovits, B., Walton, R. M., et al (2012). ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Veterinary Clinical Pathology, 41(4), 441–453.CrossRefGoogle Scholar
  6. García, I., Napp, S., Zorrilla, I., Vargas, A., Pastor, J., et al (2010). Determination of serum biochemical reference intervals for the Iberian lynx (Lynx pardinus). The Veterinary Journal, 183(2), 201–204.CrossRefGoogle Scholar
  7. Geffré, A., Concordet, D., Braun, J. P., & Trumel, C. (2011). Reference value advisor: A new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Veterinary Clinical Pathology, 40(1), 107–112.CrossRefGoogle Scholar
  8. Gilbert, S. F., & Barresi, M. J. S. (2016). Developmental biology, 11th ed. Sunderland: Sinauer Associates.Google Scholar
  9. Harewood, W. J., Gillin, A., Hennessy, A., Armistead, J., Horvath, J. S., & Tiller, D. J. (1999). Biochemistry and haematology values for the baboon (Papio hamadryas): The effects of sex, growth, development and age. Journal of Medical Primatology, 28(1), 19–31.CrossRefGoogle Scholar
  10. Havill, L., Snider, C., Leland, M., Hubbard, G., Theriot, S., & Mahaney, M. (2003). Hematology and blood biochemistry in infant baboons (Papio hamadryas). Journal of Medical Primatology, 32(3), 131–138.CrossRefGoogle Scholar
  11. Junge, R. E., & Louis, E. E. (2005). Preliminary biomedical evaluation of wild ruffed lemurs (Varecia variegata and V. rubra). American Journal of Primatology, 66(1), 85–94.CrossRefGoogle Scholar
  12. Kingdon, J., Butynski, T. M., & De Jong, Y. (2008). Papio anubis. IUCN Red List of Threatened Species.Google Scholar
  13. Maas, M., Keet, D. F., & Nielen, M. (2013). Hematologic and serum chemistry reference intervals for free-ranging lions (Panthera leo). Research in Veterinary Science, 95(1), 266–268.CrossRefGoogle Scholar
  14. Melton, C. (1982). Blood parameters of the wild chacma baboon, Papio ursinus. African Zoology, 17(2), 85–90.CrossRefGoogle Scholar
  15. Percin, F., & Konyalioglu, S. (2008). Serum biochemical profiles of captive and wild northern bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean. Aquaculture Research, 39(9), 945–953.CrossRefGoogle Scholar
  16. Ramer, J. C., MacWilliams, P., & Paul-Murphy, J. (1995). Effects of hemolysis and frozen storage on serum electrolyte and chemistry values in cotton-top tamarins (Saguinus oedipus). Journal of Zoo and Wildlife Medicine, 26, 61–66.Google Scholar
  17. Rangel-Mendoza, J., Weber, M., Zenteno-Ruiz, C. E., López-Luna, M. A., & Barba-Macías, E. (2009). Hematology and serum biochemistry comparison in wild and captive Central American river turtles (Dermatemys mawii) in Tabasco, Mexico. Research in Veterinary Science, 87(2), 313–318.CrossRefGoogle Scholar
  18. Snider, C., Dick Jr., E., McGlasson, D., Robbins, M., Sholund, R., et al (2009). Evaluation of four hematology and a chemistry portable benchtop analyzers using non-human primate blood. Journal of Medical Primatology, 38(6), 390–396.CrossRefGoogle Scholar
  19. Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D., & Crofoot, M. C. (2015). Shared decision-making drives collective movement in wild baboons. Science, 348(6241), 1358–1361.CrossRefGoogle Scholar
  20. Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C., & Couzin, I. D. (2017). Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. ELife, 6, e19505.CrossRefGoogle Scholar
  21. Teare, J. (2002). Physiological data reference values. Eagan: International Species Information System.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mathew Mutinda
    • 1
  • Margaret C. Crofoot
    • 2
    • 3
    • 4
    Email author
  • Jennifer C. Kishbaugh
    • 5
    Email author
  • Lee-Ann C. Hayek
    • 6
  • Dawn Zimmerman
    • 5
  • Devin A. Tunseth
    • 5
  • Suzan Murray
    • 5
  1. 1.Kenya Wildlife ServiceNairobiKenya
  2. 2.Department of AnthropologyUniversity of California DavisDavisUSA
  3. 3.Animal Behavior Graduate GroupUniversity of California DavisDavisUSA
  4. 4.Smithsonian Tropical Research InstitutePanamaRepublic of Panama
  5. 5.Smithsonian Institution, National Zoological ParkSmithsonian Global Health ProgramWashingtonUSA
  6. 6.Smithsonian InstitutionNational Museum of Natural HistoryWashingtonUSA

Personalised recommendations