Advertisement

An Application of Autonomous Recorders for Gibbon Monitoring

  • Thinh Tien Vu
  • Long Manh Tran
Article

Abstract

Population monitoring is very important in wildlife management and conservation. All 18 species of gibbons are considered threatened with extinction and listed on the IUCN Red List of Threatened Species. Thus, understanding and effectively monitoring their population trends and distribution are critical. Thus far, all gibbon surveying and monitoring programs have been conducted by human surveyors; this is expensive, laborious, and dependent on the surveyors’ skills. In particular, estimating group density often requires a large sample size with several skilled observers working simultaneously in the field. We used autonomous recorders to record the calls of southern yellow-cheeked crested gibbon (Nomascus gabbrielae) for at least 3 days at each of 57 posts in Nam Cat Tien sector, Cat Tien National Park, Vietnam from July to October, 2016. We extracted gibbon calls from the recordings auditorily or visually using spectrograms in RAVEN software. We detected gibbon calls at 40 recording posts during the survey. The proportion of recorders with gibbon calls in the eastern region of Nam Cat Tien sector (mean = 0.79; SE = 0.13) was higher than that in the western region (mean = 0.46; SE = 0.11). The estimated probability of occurrence in the eastern region (ψ = 0.56; SE = 0.20) was higher than that in the western region (ψ = 0.23; SE = 0.16). Passive acoustic data were useful to investigate spatial variation in the probability of occurrence of gibbon. We recommend using autonomous recorders combined with occupancy model to complement human surveyors in gibbon monitoring in areas with low gibbon density because it is efficient, low cost, and not subject to errors caused by human surveyors. In the areas of high gibbon density, absolute density estimate achieved by human surveyors might be a more suitable indicator.

Keywords

Bioacoustics Gibbon Nomascus Occupancy model Primate Song meter 

Notes

Acknowledgments

We would like to thank the Vietnam National Foundation for Science and Technology (NAFOSTED) for support given to this project (Grant number 106-NN.06-2015.37). Our gratitude also extends to the forest rangers in Cat Tien National Park for permitting us to conduct the survey. I would also like to thank all the field assistants for helping us with the field survey. We are thankful to Dr. Janice Moore at Colorado State University and Dr. Greg Nagle for help with proofreading of the manuscript. Finally, we thank the reviewers and editors for their insightful comments, suggestions, and corrections.

References

  1. Bach, T. H., Chen, J., Hoang, M. D., Beng, K. C., & Nguyen, V. T. (2017). Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. American Journal of Primatology, 79(8), 1–14.CrossRefGoogle Scholar
  2. Bartlett, Q. T., Light, L., & Brockelman, W. (2015). Long-term home range use in white-handed gibbons (Hylobates lar) in Khao Yai National Park, Thailand. American Journal of Primatology, 78, 192–203.CrossRefGoogle Scholar
  3. BI & FIPI (BirdLife International & Forest Inventory and Planning Institute). (2001). Sourcebook of existing and proposed protected areas in Vietnam. Hanoi: BirdLife International Vietnam Programme and the Forest Inventory and Planning Institute.Google Scholar
  4. Brockelman, W. Y., & Ali, R. (1987). Methods of surveying and sampling forest primate populations. In C. W. Marsh & R. A. Mittermeier (Eds.), Primate conservation in the tropical rainforest (pp. 23–62). New York: Alan R. Liss.Google Scholar
  5. Brockelman, W. Y., & Srikosamatara, S. (1993). Estimation of density of gibbon groups by use of loud songs. American Journal of Primatology, 29(2), 93–108.CrossRefGoogle Scholar
  6. Buckland, S. T., Anderson, D. R., Burnham, K. P., & Laake, J. L. (1993). Distance sampling. Dordrecht: Springer.Google Scholar
  7. Burnham, K. P., & Anderson, D. (2002). Model selection and multi-model inference: A practical information – theoretic approach (2nd ed.). New York: Springer Science+Business Media.Google Scholar
  8. Campos-Cerqueira, M., & Aide, T. M. (2016). Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling. Methods in Ecology and Evolution.  https://doi.org/10.1111/2041-1210X.12599.
  9. Celis-Murillo, A., Deppe, J. L., & Ward, M. P. (2012). Effectiveness and utility of acoustic recordings for surveying tropical birds. Journal of Field Ornithology, 83, 166–179.CrossRefGoogle Scholar
  10. Chambert, T., Waddle, J. H., Miller, D. A. W., Walls, S. C., Nichols, J. D., & Yoccoz, N. (2018). A new framework for analysing automated acoustic species detection data: Occupancy estimation and optimization of recordings post-processing. Methods in Ecology and Evolution, 9(3), 560–570.CrossRefGoogle Scholar
  11. Chesmore, E. D., & Ohya, E. (2004). Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition. Bulletin of Entomological Research, 94, 319–330.CrossRefGoogle Scholar
  12. Cheyne, S. M., Gilhooly, L. J., Hamard, M. C., Höing, A., Houlihan, P. J., et al (2016). Population mapping of gibbons in Kalimantan, Indonesia: Correlates of gibbon density and vegetation across the species range. Endangered Species Research, 30, 133–143.CrossRefGoogle Scholar
  13. CTNP (Cat Tien National Park). (2016). Forest cover map of Cat Tien National Park [1:10,000]. Available from http://www.namcattien.org/. Accessed 15 June 2017.
  14. Fonzo, M. D., Collen, B., & Mace, G. M. (2013). A new method for identifying rapid decline dynamics in wild vertebrate populations. Ecology and Evolution, 3(7), 2378–2391.CrossRefGoogle Scholar
  15. Geissmann, T. (1993). Evolution of communication in gibbons (Hylobatidae). PhD dissertation, Zürich University.Google Scholar
  16. Geissmann, T., & Orgeldinger, M. (2000). The relationship between duet songs and pair bonds in siamangs, Hylobates syndactylus. Animal Behavior, 60, 805–809.CrossRefGoogle Scholar
  17. Gilhooly, L. J., Rayadin, Y., & Cheyne, S. M. A. (2015). Comparison of Hylobatid survey methods using triangulation on Müller’s gibbon (Hylobates muelleri) in Sungai Wain Protection forest, East Kalimantan, Indonesia. International Journal of Primatology, 36, 567–572.CrossRefGoogle Scholar
  18. Gray, T. N. E., Phan, C., & Long, B. (2010). Modelling species distribution at multiple spatial scales: Gibbon habitat preferences in a fragmented landscape. Animal Conservation, 13, 324–332.CrossRefGoogle Scholar
  19. Hamard, M., Cheyne, S. M., & Nijman, V. (2010). Vegetation correlates of gibbon density in the peat-swamp forest of the Sabangau catchment, Central Kalimantan, Indonesia. American Journal of Primatology, 72(7), 607–616.PubMedGoogle Scholar
  20. Hilje, B., & Aide, T. M. (2012). Calling activity of the common tink frog (Diasporus diastema) (Eleutherodactylidae) in secondary forests of the Caribbean of Costa Rica. Tropical Conservation Science, 5, 25–37.CrossRefGoogle Scholar
  21. IUCN Red List of Threatened Species (2017). Version 2017–1. www.iucnredlist.org.
  22. Jiang, X. L., Luo, Z. H., & Zhao, S. Y. (2006). Status and distribution patterns of black crested gibbon (Nomascus concolor jingdongensis) in Wulian Mountains, Yunnan, China: Implications for conservation. Primates, 47, 264–271.CrossRefGoogle Scholar
  23. Kalan, A. K., Mundry, R., Wagner, O. J. J., Heinicke, S., Boesch, C., & Kühl, H. S. (2015). Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring. Ecological Indicators, 54, 217–226.CrossRefGoogle Scholar
  24. Kenyon, M. A. (2008). Ecology of the golden-cheeked gibbon (Nomascus gabriellae) in Cat Tien National Park, Vietnam. PhD dissertation, University of Cambridge.Google Scholar
  25. Kidney, D., Rawson, B. M., Borchers, D. L., Stevenson, B. C., Marques, T. A., & Thomas, L. (2016). An efficient acoustic density estimation method with human detectors applied to gibbons in Cambodia. PLoS One, 11(5), e0155066.CrossRefGoogle Scholar
  26. MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2006). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. New York: Academic Press.Google Scholar
  27. Marsh, D. M., & Trenham, P. C. (2008). Tracking current trends in plant and animal population monitoring. Conservation Biology, 22, 647–655.CrossRefGoogle Scholar
  28. Nijman, V. (2004). Conservation of the Javan gibbon Hylobates moloch: Population estimates, local extinctions and conservation priorities. The Raffles Bulletin of Zoology, 52, 271–280.Google Scholar
  29. O’Brien, T. G., Kinnaird, M. F., Nurcahyo, A., Iqbal, M., & Rusmanto, M. (2004). Abundance and distribution of sympatric gibbons in a threatened Sumatran rain forest. International Journal of Primatology, 25, 267–284.CrossRefGoogle Scholar
  30. Phoonjampa, R., Koenig, A., Brockelman, W. Y., Borries, C., Gale, G. A., et al (2011). Pileated gibbon density in relation to habitat characteristics and post-logging forest recovery. Biotropica, 43(5), 619–627.CrossRefGoogle Scholar
  31. Reisland, M. A., & Lambert, J. E. (2016). Sympatric apes in sacred forests: Shared space and habitat use by humans and endangered Javan gibbons (Hylobates moloch). PLoS One, 11(1), e0146891.CrossRefGoogle Scholar
  32. Spillmann, B., Noordwijk, V., Erik, M. A., Willems, E. P., Setia, T. M., et al (2015). Validation of an acoustic location system to monitor Bornean orangutan (Pongo pygmaeus wurmbii) long calls. American Journal of Primatology, 77(7), 767–776.CrossRefGoogle Scholar
  33. Thomas, L., & Marques, T. (2012). Passive acoustic monitoring for estimating animal density. Acoustics Today, 8, 35–44.CrossRefGoogle Scholar
  34. Thompson, M. E., Schwager, S. J., Payne, K. B., & Turkalo, A. K. (2010). Acoustic estimation of wildlife abundance: Methodology for vocal mammals in forested habitats. African Journal of Ecology, 48(3), 654–661.Google Scholar
  35. Thompson, W. L., White, G. C., & Gowan, C. (1998). Monitoring vertebrate populations. New York: Academic Press.Google Scholar
  36. Tremain, S. B., Swiston, K. A., & Mennill, D. J. (2008). Seasonal variation in acoustic signals of pileated woodpeckers (Dryocopus pileatus). Wilson Journal of Ornithology, 120, 499–504.CrossRefGoogle Scholar
  37. Vu, T. T., & Dong, T. H. (2015). Estimation of northern yellow-cheeked gibbon (Nomascus annamensis) population size in Kon Cha Rang Nature Reserve: A new method–using a weighted correction factor. Vietnamese Journal of Primatology, 2, 41–48.Google Scholar
  38. Vu, T. T., Tran, V. D., Giang, T. T., Nguyen, H. V., Nguyen, D. M., et al (2016). A mark-recapture population size estimation of southern yellow-cheeked crested gibbon Nomascus gabriellae (Thomas, 1909) in Chu Yang Sin National Park, Vietnam. Asian Primate Journal, 6, 33–42.Google Scholar
  39. Vu, T. T., Tran, M. L., Nguyen, D. M., Tran, V. D., Doherty, P. F., et al. (2018a). A distance sampling approach to estimate density and abundance of gibbon groups. American Journal of Primatology, 80(9), 1–7.  https://doi.org/10.1002/ajp.22903
  40. Vu, T. T., Tran, M. L., Nguyen, D. M., Tran, V. D., & Ta, T. N. (2018b). Improving the estimation of calling probability and correction factors in gibbon monitoring using the auditory point count method. International Journal of Primatology, 39(2), 222–236.CrossRefGoogle Scholar
  41. White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study, 46, 120–139.CrossRefGoogle Scholar
  42. Williams, B., Nichols, J., & Conroy, M. (2002). Analysis and management of animal populations. Cambridge, UK: Academic Press.Google Scholar
  43. Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2011). Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16(8), 446–453.CrossRefGoogle Scholar
  44. Zwart, M. C., Baker, A., McGowan, P. J. K., & Whittingham, M. J. (2014). The use of automated bioacoustic recorders to replace human wildlife surveys: An example using nightjars. PLoS One, 9(7), 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Wildlife, Faculty of Forest Resource and Environment ManagementVietnam National University of ForestryHanoiVietnam
  2. 2.Forest Protection Department, Ministry of Agriculture and Rural DevelopmentBa DinhVietnam

Personalised recommendations