International Journal of Primatology

, Volume 39, Issue 6, pp 1068–1104 | Cite as

How Many Species, Taxa, or Lineages of Cebus albifrons (Platyrrhini, Primates) Inhabit Ecuador? Insights from Mitogenomics

  • Manuel Ruiz-GarcíaEmail author
  • Sebastián Sánchez-Castillo
  • María Ignacia Castillo
  • Kelly Luengas
  • Juan Manuel Ortega
  • Pablo Moreno
  • Luis Albuja
  • Christian Miguel Pinto
  • Joseph Mark Shostell


A first step in protecting groups of similarly structured organisms is to place them into discrete taxa. Molecular genetics and phylogeny allow us to rebuild the evolutionary history of these taxa. The Neotropics has roughly 34% of Earth’s primate diversity. However, the systematics of Neotropical primates is complex and controversial. The untufted (gracile) capuchins are traditionally classified as four species: Cebus albifrons, C. capucinus, C. olivaceus, and C. kaapori. Of these, Cebus albifrons has confusing intraspecific systematics with a large number of fragmented and isolated populations throughout its geographical distribution, and up to 13 morphological subspecies. The number of taxa of this species in Ecuador, some areas of northern and eastern Colombia, and Trinidad Island is particularly debated. Primatologists have defined two taxa of C. albifrons in Ecuador: a trans-Andean population: C. a. aequatorialis (or C. aequatorialis) and a cis-Andean population: C. a. yuracus (or C. yuracus). To better understand the systematics of this species, we sequenced the mitogenomes of 136 Cebus albifrons, two Cebus olivaceus, and one Cebus kaapori. Our phylogenetic analyses revealed at least nine significantly different haplogroups of C. albifrons in Ecuador, four of which contained exemplars from both the trans-Andean Pacific Ecuador and the cis-Andean Ecuadorian Amazon. The splits of these Ecuadorian haplogroups, and the initial diversification within them, occurred during the Middle to Late Pliocene and the beginning of the Pleistocene. Individuals we analyzed from Vichada Department in eastern Colombia were genetically distinct from other groups of C. albifrons, agreeing with morphological studies which consider it a full subspecies (C. a. albifrons). Phylogenetic analyses showed two different gracile capuchin taxa on Trinidad Island: C. a. trininatis and C. o. brunneus. We conclude that a large portion of the gracile capuchin taxa form a unique species with a complex of populations and subspecies. The species has conserved its reproductive integrity by repeated episodes of reticulation and high levels of gene flow.


Cebus albifrons Ecuador Gracile capuchins Mitogenomics Pleistocene Pliocene Spatial structure Systematics 



We thank Dr. Diana Alvarez, Pablo Escobar-Armel, Nicolás Lichilín, Luisa Fernanda Castellanos-Mora, Armando Castellanos, Andrés Laguna, and Lina Argüello for their respective help in obtaining capuchin samples during the last 20 years. We thank Dr. Horacio Schneider and Dr. Iracilda Sampaio for providing DNA samples of Cebus olivaceus and Cebus kaapori. We express our appreciation to the Ministerio del Ambiente Ecuatoriano (MAE) in Santo Domingo de Tsáchilas and in Coca, the Instituto von Humboldt (Colombia), the Peruvian Ministry of Environment, PRODUCE (Dirección Nacional de Extracción y Procesamiento Pesquero), Consejo Nacional del Ambiente and the Instituto Nacional de Recursos Naturales (INRENA) from Peru, the Colección Boliviana de Fauna (Dr. Julieta Vargas), and CITES Bolivia for their role in facilitating the obtainment of the collection permits in Ecuador, Colombia, Peru, and Bolivia. We extend special thanks to the many people of diverse Indian tribes in Ecuador (Kichwa, Huaorani, Shuar, and Achuar), in Colombia (Jaguas, Ticunas, Huitoto, Cocama, Tucano, Nonuya, Yuri, and Yucuna), in Peru (Bora, Ocaina, Shipigo-Comibo, Capanahua, Angoteros, Orejón, Cocama, Kishuarana, and Alamas), and Bolivia (Sirionó, Canichana, Cayubaba, and Chacobo) for their assistance in obtaining samples of white-faced capuchins. We also acknowledge the editor and reviewers for their suggestions to improve the quality of the manuscript.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.Google Scholar
  2. Aleixo, A., & de Fatima Rossetti, D. (2007). Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography? Journal of Ornithology, 148(Suppl. 2), S443–S453.Google Scholar
  3. Amaral, P. J. S., Finotelo, L. M. F., De Oliveira, E. H. C., Pissinatti, A., Nagamachi, C. Y., & Pieczarka, J. C. (2008). Phylogenetic studies of the genus Cebus (Cebidae-Primates) using chromosome painting and G-banding. BMC Evolutionary Biology, 8, 169.PubMedPubMedCentralGoogle Scholar
  4. Ascunce, M. S., Hasson, E., & Mudry, M. D. (2003). COII: A useful tool for inferring phylogenetic relationships among New World monkeys (Primates, Platyrrhini). Zoologica Scripta, 32, 397–406.Google Scholar
  5. Ashley, M. V., & Vaughn, T. A. (1995). Owl monkeys (Aotus) are highly divergent in mitochondrial cytochrome c oxidase (COII) sequences. International Journal of Primatology, 16(5), 793–807.Google Scholar
  6. Avise, J. C. (1994). Molecular markers, natural history, and evolution. New York: Chapman and Hall.Google Scholar
  7. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., et al (1987). Intraspecific phylogeographic: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.Google Scholar
  8. Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.PubMedGoogle Scholar
  9. Bensasson, D., Zhang, D.-X., Hartl, D. L., & Hewitt, G. M. (2001). Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology & Evolution, 16, 314–321.Google Scholar
  10. Boubli, J. P., Rylands, A. B., Farias, I. P., Alfaro, M. E., & Lynch-Alfaro, J. W. (2012). Cebus phylogenetic relationships: a preliminary reassessment of the diversity of the untufted capuchin monkeys. American Journal of Primatology, 74, 381–393.PubMedGoogle Scholar
  11. Bradley, R. D., & Baker, R. J. (2001). A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy, 82, 960–973.Google Scholar
  12. Brouns, G., De Wulf, A., & Constales, D. (2003). Delaunay triangulation algorithms useful for multibeam echosounding. Journal of Surveying Engineering, 129, 79–84.Google Scholar
  13. Campbell, K. E. (1990). The geologic basis of biogeographic patterns in Amazonia. In G. Peters & R. Hutterer (Eds.), Vertebrates in the tropics (pp. 33–43). Bonn: Alexander Koenig Zoological Research Institute.Google Scholar
  14. Casado, F., Bonvicino, C. R., Nagle, C., Comas, B., Manzur, T. D., et al (2010). Mitochondrial divergence between 2 populations of the hooded capuchin, Cebus (Sapajus) cay (Platyrrhini, Primates). Journal of Heredity, 101, 261–269.PubMedGoogle Scholar
  15. Coates, A. G., & Obando, J. A. (1996). The geologic evolution of the central American isthmus. In J. B. C. Jackson, A. F. Budd, & A. G. Coates (Eds.), Evolution and environment in tropical America (pp. 21–56). Chicago: University of Chicago Press.Google Scholar
  16. Collins, A. C., & Dubach, J. M. (2000). Phylogenetic relationships of spider monkeys (Ateles) based on mitochondrial DNA variation. International Journal of Primatology, 21, 381–420.Google Scholar
  17. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
  18. Cracraft, J. (1983). Species concepts and speciation analysis. In R. J. Johnston (Ed.), Current ornithology (Vol. I, pp. 158–187). New York: Plenum Press.Google Scholar
  19. Cracraft, J. (1989). Speciation and its ontology: The empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In D. Otte & J. Endler (Eds.), Speciation and its consequences (pp. 28–59). Sunderland, MA: Sinauer Associates.Google Scholar
  20. de Silva, J.S. (2001). Especiacao nos macacos-pregos e caiararas, género Cebus Erxleben, 1777 (Primates, Cebidae) (pp. 1–377). Doctoral thesis, Universidade Federal do Rio de Janeiro.Google Scholar
  21. Defler, T. R. (2003). Primates de Colombia. Bogotá: Conservación Internacional.Google Scholar
  22. Defler, T. R., & Hernández-Camacho, J. I. (2002). The true identity and characteristics of Simia albifrons Humboldt, 1812: description of neotype. Neotropical Primates, 10, 49–64.Google Scholar
  23. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.PubMedPubMedCentralGoogle Scholar
  24. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.PubMedPubMedCentralGoogle Scholar
  25. Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.PubMedGoogle Scholar
  26. Erixon, P., Svennblad, B., Britton, T., & Oxelman, B. (2003). Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology, 52, 665–673.PubMedGoogle Scholar
  27. Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Molecular Ecology Resources, 10, 564–567.PubMedPubMedCentralGoogle Scholar
  28. Frailey, C. D., Lavina, E. L., Rancy, A., & Pereira de Souza, J. (1988). A proposed Pleistocene/Holocene lake in the Amazon Basin and its significance to Amazonian geology and biogeography. Acta Amazonica, 18, 119–143.Google Scholar
  29. Fu, Y. X. (1997). Statistical tests of neutrality against population growth, hitchhiking and background selection. Genetics, 147, 915–925.PubMedPubMedCentralGoogle Scholar
  30. Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133, 693–709.PubMedPubMedCentralGoogle Scholar
  31. Galtier, N., Enard, D., Radondy, Y., Bazin, E., & Belkhir, K. (2006). Mutation hotspots in mammalian mitochondrial DNA. Genome Research, 16, 215–222.PubMedPubMedCentralGoogle Scholar
  32. Groves, C. P. (2001). Primate taxonomy. Washington, DC: Smithsonian Institution Press.Google Scholar
  33. Groves, C. P. (2005). Order primates. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world: A taxonomic and geographic reference (pp. 111–184). Baltimore: Johns Hopkins University Press.Google Scholar
  34. Guschanski, K., Krause, J., Sawyer, S., Valente, L. M., Bailey, S., et al (2013). Next-generation museomics disentangles one of the largest primate radiations. Systematic Biology, 62, 539–554.PubMedPubMedCentralGoogle Scholar
  35. Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165, 131–137.PubMedGoogle Scholar
  36. Haffer, J. (1997). Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation, 6, 451–476.Google Scholar
  37. Haffer, J. (2008). Hypotheses to explain the origin of species in Amazonia. Brazilian Journal of Biology, 68, 917–947.Google Scholar
  38. Haig, S. M. (1998). Molecular contributions to conservation. Ecology, 79, 413–425.Google Scholar
  39. Harpending, H. (1994). Signature of ancient population growth in a low resolution mitochondrial DNA mismatch distribution. Human Biology, 66, 591–600.PubMedGoogle Scholar
  40. Harpending, H. C., Sherry, S. T., Rogers, A. R., & Stoneking, M. (1993). Genetic structure of ancient human populations. Current Anthropology, 34, 483–496.Google Scholar
  41. Hebert, P. D. N., Cywinska, A., Ball, S. L., & de Waard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313–321.Google Scholar
  42. Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2, 1657–1663.Google Scholar
  43. Hernández-Camacho, J., & Cooper, R. W. (1976). The nonhuman primates of Colombia. In R. W. Thorington Jr. & P. G. Heltne (Eds.), Neotropical primates: Field studies and conservation (pp. 35–69). Washington, DC: National Academy of Sciences.Google Scholar
  44. Hershkovitz, P. (1949). Mammals of northern Colombia. Preliminary report n° 4: Monkeys (Primates), with taxonomic revisions of some forms. Proceedings of the United States National Museum, 98, 323–427.Google Scholar
  45. Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192.Google Scholar
  46. Hubert, N., & Renno, J. F. (2006). Historical biogeography of south American freshwater fishes. Journal of Biogeography, 33, 1414–1436.Google Scholar
  47. Hubert, N., Duponchelle, F., Nunez, J., Garcia-Davila, C., Paugy, D., & Renno, J. F. (2007). Phylogeography of the piranha genera Serrasalmus and Pygocentrus: Implications for the diversification of the Neotropical ichthyofauna. Molecular Ecology, 16, 2115–2136.PubMedGoogle Scholar
  48. Hudson, R. R., Boss, D. D., & Kaplan, N. L. (1992). A statistical test for detecting population subdivision. Molecular Biology and Evolution, 9, 138–151.PubMedGoogle Scholar
  49. Huelsenbeck, J. P., & Rannala, B. (2004). Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology, 53, 904–913.PubMedGoogle Scholar
  50. International Commission on Stratigraphy (2007). International Stratigraphic Chart.
  51. Janson, C. H., & Emmons, L. H. (1990). Ecological structure of the nonflying mammal community at Cocha Cashu Biological Station, Manu National Park, Peru. In A. H. Gentry (Ed.), Four Neotropical forests (pp. 314–338). New Haven: Yale University Press.Google Scholar
  52. Kartavtsev, Y. (2011). Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA, 22, 55–65.PubMedGoogle Scholar
  53. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.PubMedGoogle Scholar
  54. Klammer, G. (1984). The relief of the extra-Andean Amazon basin. In H. Sioli (Ed.), The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin (pp. 47–83). Dordrecht: Junk Publishers.Google Scholar
  55. Lanave, C. G., Preparata, C., & Saccone, C. (1984). A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20, 86–93.Google Scholar
  56. Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.PubMedGoogle Scholar
  57. Lynch-Alfaro, J. W., De Souza, E., Silva Jr., J., & Rylands, A. B. (2012). How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. American Journal of Primatology, 74, 273–286.Google Scholar
  58. MacFadden, B. J. (1990). Chronology of Cenozoic primate localities in South America. Journal of Human Evolution, 19, 151–156.Google Scholar
  59. Manel, S., Schwartz, M. L., Luikart, G., & Taberlet, P. (2003). Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology & Evolution, 18, 189–197.Google Scholar
  60. Manni, F., Guerard, E., & Heyer, E. (2004). Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Human Biology, 76, 173–190.PubMedGoogle Scholar
  61. Mantel, N. A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.PubMedGoogle Scholar
  62. Marroig, G., & Cerqueira, R. (1997). Plio-Pleistocene south American history and the Amazon Lagoon hypothesis: a piece in the puzzle of Amazonian diversification. Journal of Comparative Biology, 2, 103–119.Google Scholar
  63. Marshall, L. G. (1985). Geochronology and land-mammal biochronology of the Transamerican fauna interchange. In F. G. Stehli & S. D. Webb (Eds.), The great American biotic interchange (pp. 49–85). New York: Plenum Press.Google Scholar
  64. Marshall, L. G. (1988). Land mammals and the great American interchange. American Scientist, 76, 380–388.Google Scholar
  65. Marshall, L. G., & Lundberg, J. G. (1996). Miocene deposits in the Amazonian foreland basin. Science, 273, 123–124.Google Scholar
  66. Marshall, L. G., Butler, R. F., Drake, R. E., Curtis, G. H., & Tedford, R. H. (1979). Calibration of the great American interchange. Science, 204, 272–279.PubMedGoogle Scholar
  67. Marshall, L. G., Webb, S. D., Sepkoski, J. J., & Raup, D. M. (1982). Mammalian evolution and the great American interchange. Science, 215, 1351–1357.PubMedGoogle Scholar
  68. Mason, V. C., Li, G., Helgen, K. M., & Murphy, W. J. (2011). Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Research, 21, 1695–1704.PubMedPubMedCentralGoogle Scholar
  69. Mayr, E. (1963). Animal species and evolution. Cambridge: Harvard University Press.Google Scholar
  70. Mayr, E. (1970). Populations, species and evolution. Cambridge: Harvard University Press.Google Scholar
  71. Miller, M. P. (2005). Alleles in space: computer software for the joint analysis of interindividual spatial and genetic information. Journal of Heredity, 96, 722–724.PubMedGoogle Scholar
  72. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, D. J., Mountain, G. S., et al (2005). The Phanerozoic record of global sea-level change. Science, 310, 1293–1298.PubMedGoogle Scholar
  73. Mittermeier, R. A. (1982). Introduction. International Zoo Yearbook, 22, 1–2.Google Scholar
  74. Mittermeier, R. A., & Richardson, M. (2013). Conservation of primate populations. Encyclopedia of Biodiversity, 6, 250–260.Google Scholar
  75. Monmonier, M. S. (1973). Maximum-difference barriers: an alternative numerical regionalization method. Geographical Analysis, 5, 245–261.Google Scholar
  76. Moore, W. (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49, 718–726.PubMedGoogle Scholar
  77. Morral, N., Bertrantpetit, J., & Estivill, X. (1994). The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nature Genetics, 7, 169–175.PubMedGoogle Scholar
  78. Nabholz, B., Ellegren, H., & Wolf, J. B. (2012). High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes. Molecular Biology and Evolution, 30, 272–284.PubMedGoogle Scholar
  79. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.Google Scholar
  80. Nores, M. (1999). An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography, 26, 475–485.Google Scholar
  81. Nores, M. (2004). The implications of tertiary and Quaternary Sea level rise events for avian distribution patterns in the lowlands of northern South America. Global Ecology Biogeography, 13, 149–162.Google Scholar
  82. Nylander, J. A. (2004). MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Center, Uppsala University.Google Scholar
  83. Paxton, C. G. M., Crampton, W. G. R., & Burgess, P. (1996). Miocene deposits in the Amazonian foreland basin. Science, 273, 123.Google Scholar
  84. Pennington, R. T., & Dick, C. W. (2010). Diversification of the Amazonian flora and its relation to key geological and environmental events: A molecular perspective. In C. Hoorn & F. Wesselingh (Eds.), Amazonia, landscape and species evolution: A look into the past (pp. 373–385). Oxford: Wiley-Blackwell.Google Scholar
  85. Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808.PubMedGoogle Scholar
  86. Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution, 16, 37–45.Google Scholar
  87. Rambaut, A. (2012). FigTree v1.4.
  88. Rambaut, A., & Drummond, A. J. (2013a). LogCombiner v1.8.0.
  89. Rambaut, A., & Drummond, A. J. (2013b). TreeAnnotator v1.8.0.
  90. Rambaut, A., Suchard, M. A., Xie, W., & Drummond, A. J. (2013). Tracer v1.6.
  91. Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–2100.PubMedGoogle Scholar
  92. Rogers, A. R., & Harpending, H. C. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.PubMedGoogle Scholar
  93. Rogers, A. R., Fraley, A. E., Bamshad, M. J., Watkins, W. S., & Jorde, L. B. (1996). Mitochondrial mismatch analysis is insensitive to the mutational process. Molecular Biology and Evolution, 13, 895–902.PubMedGoogle Scholar
  94. Ruiz-García, M. (1990). Frecuencias alélicas en la población de gatos domésticos de la isla de Menorca (Baleares): Diferentes modelos de Evolución Colonizadora. Evolución Biológica, 4, 307–342.Google Scholar
  95. Ruiz-García, M. (1991). Más sobre genética de poblaciones de Felis catus en la costa Mediterránea Española: Un análisis de la Estructura Genética de las poblaciones naturales de gatos. Evolución Biológica, 5, 227–283.Google Scholar
  96. Ruiz-García, M. (1993). Analysis of the evolution and genetic diversity within and between Balearic and Iberian cat populations. Journal of Heredity, 84, 173–180.PubMedGoogle Scholar
  97. Ruiz-García, M. (1994). Genetic profiles from coat genes of natural Balearic cat populations: an eastern Mediterranean and north-African origin. Genetics, Selection, Evolution, 26, 39–64.Google Scholar
  98. Ruiz-García, M. (1997). Genetic relationships among some new cat populations sampled in Europe: a spatial autocorrelation analysis. Journal of Genetics, 76, 1–24.Google Scholar
  99. Ruiz-García, M. (2000). Genetic microstructure in two Spanish cat populations. II: gametic disequilibrium and spatial autocorrelation. Genes & Genetic Systems, 75, 281–292.Google Scholar
  100. Ruiz-García, M., & Castillo, M. I. (2016). Genetic structure, spatial patterns and historical demographic evolution of white-throated capuchin (Cebus capucinus, Cebidae, Primates) populations of Colombia and Central America by means of DNA microsatellites. In M. Ruiz-García & J. Shostell (Eds.), Molecular population genetics, evolutionary biology and biological conservation of the Neotropical primates (pp. 135–172). New York: Nova Science Publishers.Google Scholar
  101. Ruiz-García, M., & Pinedo-Castro, M. (2010). Molecular systematics and phylogeography of the genus Lagothrix (Atelidae, Primates) by means of mitochondrial COII gene. Folia Primatologica, 81, 109–128.Google Scholar
  102. Ruiz-García, M., & Pinedo-Castro, M. (2013). Population genetics and phylogeographic analyses of the Jaguarundi (Puma yaguaroundi) by means of three mitochondrial markers: The first molecular population study of this species. In M. Ruiz-García & J. Shostell (Eds.), Molecular population genetics, evolutionary biology and biological conservation of Neotropical carnivores (pp. 245–288). New York: Nova Science Publishers.Google Scholar
  103. Ruiz-García, M., Castillo, M. I., Vásquez, C., Rodríguez, K., Pinedo, M., et al (2010). Molecular phylogenetics and phylogeography of the white-fronted capuchin (Cebus albifrons; Cebidae, Primates) by means of mtCOII gene sequences. Molecular Phylogenetics and Evolution, 57, 1949–1061.Google Scholar
  104. Ruiz-García, M., Castillo, M. I., Ledezma, A., Pinedo, M., Leguizamon, N., et al (2012). Molecular systematics and phylogeography of Cebus capucinus (Cebidae, Primates) in Colombia and Costa Rica by means of mitochondrial COII gene. American Journal of Primatology, 74, 366–380.PubMedGoogle Scholar
  105. Ruiz-García, M., Vásquez, C., Murillo, A., Pinedo-Castro, M., & Alvarez, D. (2013a). Population genetics and phylogeography of the largest wild cat in the Americas: an analysis of the jaguar by means of microsatellites and mitochondrial gene sequences. In M. Ruiz-García & J. Shostell (Eds.), Molecular population genetics, evolutionary biology and biological conservation of Neotropical carnivores (pp. 413–464). New York: Nova Science Publishers.Google Scholar
  106. Ruiz-García, M., Rivas-Sánchez, D., & Lichilín, N. (2013b). Phylogenetics relationships among four putative taxa of foxes of the Pseudoalopex genus (Canidae, Carnivora) and molecular population genetics of Ps. culpaeus and Ps. sechurae. In M. Ruiz-García & J. Shostell (Eds.), Molecular population genetics, evolutionary biology and biological conservation of Neotropical carnivores (pp. 97–128). New York: Nova Science Publishers.Google Scholar
  107. Ruiz-García, M., Pinedo-Castro, M., & Shostell, J. M. (2014). How many genera and species of woolly monkeys (Atelidae, Platyrrhine, Primates) are? First molecular analysis of Lagothrix flavicauda, an endemic Peruvian primate species. Molecular Phylogenetics and Evolution, 79, 179–198.PubMedGoogle Scholar
  108. Ruiz-García, M., Luengas, K., Leguizamón, N., Thoisy, B., & Gálvez, H. (2015). Molecular phylogenetics and phylogeography of all the Saimiri species (Cebidae, Primates) inferred from mt COI and COII gene sequences. Primates, 56, 145–161.PubMedGoogle Scholar
  109. Ruiz-García, M., Castillo, M. I., & Luengas, K. (2016a). It is misleading to use Sapajus (robust capuchins) as a genus? A review of the evolution of the capuchins and suggestions on their systematics. In M. Ruiz-García & J. Shostell (Eds.), Molecular population genetics, evolutionary biology and biological conservation of the Neotropical primates (pp. 209–268). New York: Nova Science Publishers.Google Scholar
  110. Ruiz-García, M., Castillo, M. I., Luengas, K., & Leguizamón, N. (2016b). Invalidation of three robust capuchin species (Cebus libidinosus pallidus, C. macrocephalus and C. fatuellus; Cebidae, Primates) in the Western Amazon and Orinoco by analyzing DNA microsatellites. In M. Ruiz-García & J. Shostell (Eds.), Molecular population genetics, evolutionary biology and biological conservation of the Neotropical primates (pp. 173–208). New York: Nova Science Publishers.Google Scholar
  111. Ruiz-García, M., Luengas-Villamil, K., Pinedo-Castro, M., Leal, L., Bernal-Parra, L. M., & Shostell, J. M. (2016c). Continuous Miocene, Pliocene and Pleistocene influences on mitochondrial diversification of the capybara (Hydrochoerus hydrochoeris; Hydrochoeridae, Rodentia): incapacity to determine exclusive hypotheses on the origins of the Amazon and Orinoco diversity for this species. Journal of Phylogenetics and Evolutionary Biology, 4, 1–20.Google Scholar
  112. Ruiz-García, M., Vásquez, C., Sandoval, S., Kaston, F., Luengas-Villamil, K., & Shostell, J. M. (2016d). Phylogeography and spatial structure of the lowland tapir (Tapirus terrestris, Perissodactyla: Tapiridae) in South America. Mitochondrial DNA Part A, 27, 2334–2342.Google Scholar
  113. Ruiz-García, M., Escobar-Armel, P., Thoisy, B., Martínez-Agüero, M., Pinedo-Castro, M., & Shostell, J. M. (2017). Biodiversity in the Amazon: origin hypotheses, intrinsic capacity of species colonization, and comparative phylogeography of river otters (Lontra longicaudis and Pteronura brasiliensis, Mustelidae, Carnivora) and pink river dolphin (Inia sp, Iniidae, Cetacea). Journal of Mammalian Evolution, 24, 1–28.Google Scholar
  114. Ruiz-García, M., Sánchez-Castillo, S., Ortega, J. M., Castillo, M. I., Luengas, K., Leguizamón, N., Bello, A., & Shostell, J. M. (2018). The mystery of the genetics origins of Cebus albifrons malitiosus and C. a. hypoleucus: Mitogenomics and microsatellite analyses revealed an amazing evolutionary history of the northern Colombian white-fronted capuchins. Mitochondrial DNA (in press).Google Scholar
  115. Rylands, A. B., & Mittermeier, R. A. (2013). Familia Cebidae (squirrel monkeys and capuchins). In R. A. Mittermeier, A. B. Rylands, & D. E. Wilson (Eds.), Handbook of the mammals of the world. 3. Primates (pp. 348–413). Lynx Edicions: Barcelona.Google Scholar
  116. Rylands, A. B., Schneider, H., Mittermeier, R. A., Groves, C. P., & Rodriguez-Luna, E. (2000). An assessment of the diversity of New World Primates. Neotropical Primates, 8, 61–93.Google Scholar
  117. Rylands, A. B., Mittermeier, R. A., & Silva, J. S.,. J. (2012). Neotropical primates: taxonomy and recently described species and subspecies. International Zoo Yearbook, 46, 11–24.Google Scholar
  118. Saillard, J., Forster, P., Lynnerup, N., Bandelt, H.-J., & Norby, S. (2000). mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. American Journal of Human Genetics, 67, 718–726.PubMedPubMedCentralGoogle Scholar
  119. Schneider, H., & Sampaio, I. (2015). The systematics and evolution of New World Primates: a review. Molecular Phylogenetics and Evolution, 82, 348–357.PubMedGoogle Scholar
  120. Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.Google Scholar
  121. Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple regression and correlation extension of the mantel test of matrix corresponde. Systematic Zoology, 35, 627–632.Google Scholar
  122. Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.Google Scholar
  123. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.PubMedPubMedCentralGoogle Scholar
  124. Takai, M. (1994). New specimens of Neosaimiri fieldsi from La Venta, Colombia: a middle Miocene ancestor of the living squirrel monkeys. Journal of Human Evolution, 27, 329–360.Google Scholar
  125. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.PubMedPubMedCentralGoogle Scholar
  126. Thalmann, O., Hebler, J., Poinar, H. N., Paabo, S., & Vigilant, L. (2004). Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other apes. Molecular Ecology, 13, 321–335.PubMedGoogle Scholar
  127. Tirira, D. G. (2016). Mamíferos del Ecuador: Lista actualizada de especies / Mammals of Ecuador: Updated checklist species. Versión 2016.2. Fundación Mamíferos y Conservación. Quito. (updated January 30, 2018).
  128. Tuomisto, H., Ruokolainen, K., & Salo, J. (1992). Lago Amazonas: fact or fancy? Acta Amazonica, 33, 353–361.Google Scholar
  129. Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180.Google Scholar
  130. Van der Hammen, T. (1975). The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography, 1, 3–26.Google Scholar
  131. Van der Hammen, T., & Hooghiemstra, H. (2000). Neogene and quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19, 725–742.Google Scholar
  132. Van Roosmalen, M. G. M., & Van Roosmalen, T. (2013). ORIGIN OF ALLOPATRIC primate species and the principle of metachromic bleaching. Lexington, KY:
  133. Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506–513.PubMedGoogle Scholar
  134. Watson, D. F. (1992). Contouring: A guide to the analysis and display of spatial data. New York: Pergamon Press.Google Scholar
  135. Webb, S. D. (1985). Late Cenozoic of mammal dispersals between the Americas. In F. G. Stehli & S. D. Webb (Eds.), The great American biotic interchange (pp. 357–386). New York: Plenum Press.Google Scholar
  136. Webb, S. D. (1991). Ecogeography and the great American interchange. Paleobiology, 17, 266–280.Google Scholar
  137. Wesselingh, F. P., & Hoorn, C. (2011). Geological development of Amazon and Orinoco basins. In J. S. Albert & R. E. Reis (Eds.), Historical biogeography of Neotropical freshwater fishes (pp. 59–67). Berkeley: University of California Press.Google Scholar
  138. Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Manuel Ruiz-García
    • 1
    Email author
  • Sebastián Sánchez-Castillo
    • 1
  • María Ignacia Castillo
    • 1
  • Kelly Luengas
    • 1
  • Juan Manuel Ortega
    • 1
  • Pablo Moreno
    • 2
  • Luis Albuja
    • 3
  • Christian Miguel Pinto
    • 3
  • Joseph Mark Shostell
    • 4
  1. 1.Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Unidad de Genética Departamento de Biología, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
  2. 2.Instituto Nacional de BiodiversidadQuitoEcuador
  3. 3.Instituto de Ciencias BiológicasEscuela Politécnica NacionalQuitoEcuador
  4. 4.Math, Science and Technology DepartmentUniversity of Minnesota CrookstonCrookstonUSA

Personalised recommendations