International Journal of Primatology

, Volume 40, Issue 1, pp 53–70 | Cite as

Climate and Land Cover Analysis Suggest No Strong Ecological Barriers to Gene Flow in a Natural Baboon Hybrid Zone

  • Tim L. Wango
  • Douglas Musiega
  • Charles N. Mundia
  • Jeanne Altmann
  • Susan C. Alberts
  • Jenny TungEmail author


Admixture between diverging taxa has made, and continues to make, an important contribution to primate diversity and evolution. However, although naturally occurring hybrids have now been documented in all major primate lineages, we still know relatively little about the factors that shape when and where admixture occurs. Baboons (genus Papio), in which multiple natural hybrid zones are well described, provide a valuable system to investigate these factors. Here, we combined Geographic Information Systems and weather station data with information on genetically characterized populations in southern Kenya to investigate if ecological variables present a potential barrier to gene flow between anubis baboons and yellow baboons in the region. Specifically, we asked if altitude, seasonal temperature, or seasonal precipitation differ for weather stations in anubis, yellow, or hybrid ranges in southern Kenya, and if land cover or altitude covary with population ancestry near the hybrid zone. Our analyses suggest that the range of yellow baboons in Kenya is climatically distinct from the range of anubis baboons, with hybrids in intermediate regions. However, we identified no clear pattern of climate or land cover differentiation near the hybrid zone itself. Thus, when yellow baboons and anubis baboons come into contact, our data suggest that the resulting population composition is not consistently predicted by the ecological variables we considered. Our results support the designation of baboons as highly flexible “generalists,” and suggest that more fine-grained analyses (e.g., relative success in ecologically stressful years) may be necessary to detect clear signals of ecological barriers to gene flow.


Admixture Gene flow Geographic Information Systems Hybrid zone Papio 



We thank the Kenya Wildlife Service, Institute of Primate Research, National Museums of Kenya, National Council for Science and Technology, University of Nairobi, members of the Amboseli–Longido pastoralist communities, Tortilis Camp, and Ker and Downey Safaris for their assistance in Kenya. We also thank two anonymous reviewers for constructive comments on an earlier version of the manuscript, Kenneth Chiou for the map of the baboon species distributions modified here, and the editors of this Special Issue (Dietmar Zinner, Liliana Cortes-Ortiz, and Christian Roos) for the opportunity to contribute. T. L. Wango was supported by a grant from the Patricia William Mwangaza Foundation; weather data collection at Amboseli was supported by the National Science Foundation IOS 0919200 and IOS 1456832.

Supplementary material

10764_2017_9989_MOESM1_ESM.xlsx (81 kb)
ESM 1 (XLSX 80 kb)
10764_2017_9989_MOESM2_ESM.pdf (4 mb)
ESM 2 (PDF 4122 kb)


  1. Ackermann, R. R., Rogers, J., & Cheverud, J. M. (2006). Identifying the morphological signatures of hybridization in primate and human evolution. Journal of Human Evolution, 51(6), 632–645.PubMedGoogle Scholar
  2. Ackermann, R. R., Schroeder, L., Rogers, J., & Cheverud, J. M. (2014). Further evidence for phenotypic signatures of hybridization in descendant baboon populations. Journal of Human Evolution, 76, 54–62.PubMedPubMedCentralGoogle Scholar
  3. Alberts, S. C., & Altmann, J. (2001). Immigration and hybridization patterns of yellow and anubis baboons in and around Amboseli, Kenya. American Journal of Primatology, 53(4), 139–154.PubMedGoogle Scholar
  4. Alberts, S. C., Watts, H. E., & Altmann, J. (2003). Queuing and queue-jumping: long-term patterns of reproductive skew in male savannah baboons, Papio cynocephalus. Animal Behaviour, 65(4), 821–840.Google Scholar
  5. Altmann, J., & Muruthi, P. (1988). Differences in daily life between semiprovisioned and wild-feeding baboons. American Journal of Primatology, 15(3), 213–221.Google Scholar
  6. Altmann, J., Combes, S. L., & Alberts, S. C. (2013). Papio cynocephalus, yellow baboon. In T. M. Butynski, J. Kingdon, & J. Kalina (Eds.), Mammals of Africa (Vol. 2). London: Bloomsbury.Google Scholar
  7. Anderson, E., & Stebbins, G. L. (1954). Hybridization as an evolutionary stimulus. Evolution, 8(4), 378–388.Google Scholar
  8. Arnold, M. L. (1992). Natural hybridization as an evolutionary process. Annual Review of Ecology and Systematics, 23, 237–261.Google Scholar
  9. Arnold, M. L., & Meyer, A. (2006). Natural hybridization in primates: One evolutionary mechanism. Zoology, 109(4), 261–276.PubMedGoogle Scholar
  10. Barton, N. H. (1989). Adaptation, speciation and hybrid zones. Nature, 341, 497–503.PubMedGoogle Scholar
  11. Barton, N. H. (2001). The role of hybridization in evolution. Molecular Ecology, 10(3), 551–568.PubMedGoogle Scholar
  12. Beehner, J. C., & Bergman, T. J. (2006). Female behavioral strategies of hybrid baboons in the awash National Park, Ethiopia. In L. Swedell & S. Leigh (Eds.), Reproduction and fitness in baboons: behavioral, ecological, and life history perspectives (pp. 53–79). Developments in Primatology: Progress and Prospects. New York: Springer Science+Business Media.Google Scholar
  13. Beehner, J. C., Onderdonk, D. A., Alberts, S. C., & Altmann, J. (2006). The ecology of conception and pregnancy failure in wild baboons. Behavioral Ecology, 17(5), 741–750.Google Scholar
  14. Bergman, T. J., Phillips-Conroy, J. E., & Jolly, C. J. (2008). Behavioral variation and reproductive success of male baboons (Papio anubis× Papio hamadryas) in a hybrid social group. American Journal of Primatology, 70(2), 136–147.PubMedGoogle Scholar
  15. Charpentier, M. J. E., Tung, J., Altmann, J., & Alberts, S. C. (2008). Age at maturity in wild baboons: genetic, environmental and demographic influences. Molecular Ecology, 17(8), 2026–2040.PubMedGoogle Scholar
  16. Charpentier, M. J., Fontaine, M. C., Cherel, E., Renoult, J. P., Jenkins, T., et al (2012). Genetic structure in a dynamic baboon hybrid zone corroborates behavioural observations in a hybrid population. Molecular Ecology, 21(3), 715–731.PubMedGoogle Scholar
  17. de Jong, Y. A., & Butynski, T. M. (2010). Photographic maps of the primates of Kenya and Tanzania: a tool for identification and conservation. Primate Conservation, 25, 27–32.Google Scholar
  18. de Manuel, M., Kuhlwilm, M., Frandsen, P., Sousa, V. C., Desai, T., et al (2016). Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science, 354(6311), 477–481.PubMedPubMedCentralGoogle Scholar
  19. Detwiler, K. M., Burrell, A. S., & Jolly, C. J. (2005). Conservation implications of hybridization in African cercopithecine monkeys. International Journal of Primatology, 26(3), 661–684.Google Scholar
  20. Dunn, J., Cardini, A., & Elton, S. (2013). Biogeographic variation in the baboon: dissecting the cline. Journal of Anatomy, 223(4), 337–352.PubMedPubMedCentralGoogle Scholar
  21. Eastman, J. (2003). IDRISI Kilimanjaro: guide to GIS and image processing. Worcester: Clark Labs, Clark University.Google Scholar
  22. Fischer, J., Kopp, G. H., Dal Pesco, F., Goffe, A., Hammerschmidt, K., et al (2017). Charting the neglected West: the social system of Guinea baboons. American Journal of Physical Anthropology, 162(S63), 15–31.PubMedGoogle Scholar
  23. Gesquiere, L. R., Khan, M., Shek, L., Wango, T. L., Wango, E. O., et al (2008). Coping with a challenging environment: effects of seasonal variability and reproductive status on glucocorticoid concentrations of female baboons (Papio cynocephalus). Hormones and Behavior, 54(3), 410–416.PubMedPubMedCentralGoogle Scholar
  24. Gesquiere, L. R., Onyango, P. O., Alberts, S. C., & Altmann, J. (2011). Endocrinology of year-round reproduction in a highly seasonal habitat: Environmental variability in testosterone and glucocorticoids in baboon males. American Journal of Physical Anthropology, 144(2), 169–176.PubMedGoogle Scholar
  25. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., et al (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710–722.PubMedPubMedCentralGoogle Scholar
  26. Hatfield, T., & Schluter, D. (1999). Ecological speciation in sticklebacks: Environment-dependent hybrid fitness. Evolution, 53, 866–873.PubMedGoogle Scholar
  27. Hoekstra, H. (2006). Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity, 97(3), 222–234.PubMedGoogle Scholar
  28. Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E., & Safran, R. J. (2010). Vertebrate pigmentation: From underlying genes to adaptive function. Trends in Genetics, 26(5), 231–239.PubMedGoogle Scholar
  29. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–427.Google Scholar
  30. Jiggins, C. D., & Mallet, J. (2000). Bimodal hybrid zones and speciation. Trends in Ecology & Evolution, 15(6), 250–255.Google Scholar
  31. Jolly, C. J. (1993). Species, subspecies, and baboon systematics. In W. H. Kimbel & L. B. Martin (Eds.), Species, species concepts, and primate evolution (pp. 67–107). New York: Plenum Press.Google Scholar
  32. Jolly, C. J. (2001). A proper study for mankind: analogies from the papionin monkeys and their implications for human evolution. American Journal of Physical Anthropology, 116(S33), 177–204.Google Scholar
  33. Jolly, C. J., Burrell, A. S., Phillips-Conroy, J. E., Bergey, C., & Rogers, J. (2011). Kinda baboons (Papio kindae) and grayfoot chacma baboons (P. ursinus griseipes) hybridize in the Kafue river valley, Zambia. American Journal of Primatology, 73(3), 291–303.PubMedGoogle Scholar
  34. Kahle, D., & Wickham, H. (2013). ggmap: spatial visualization with ggplot2. The R Journal, 5(1), 144–161.Google Scholar
  35. Keller, C., Roos, C., Groeneveld, L., Fischer, J., & Zinner, D. (2010). Introgressive hybridization in southern African baboons shapes patterns of mtDNA variation. American Journal of Physical Anthropology, 142(1), 125–136.PubMedGoogle Scholar
  36. Kingdon, J. (1997). The Kingdon field guide to African mammals. London: Academic Press.Google Scholar
  37. Kuhlwilm, M., Gronau, I., Hubisz, M. J., de Filippo, C., Prado-Martinez, J., et al (2016). Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 530(7591), 429–433.PubMedPubMedCentralGoogle Scholar
  38. Lewontin, R. C., & Birch, L. C. (1966). Hybridization as a source of variation for adaptation to new environments. Evolution, 20(3), 315–336.PubMedGoogle Scholar
  39. Malukiewicz, J., Boere, V., Fuzessy, L. F., Grativol, A. D., de Oliveira e Silva, I., et al (2015). Natural and anthropogenic hybridization in two species of eastern Brazilian marmosets (Callithrix jacchus and C. penicillata). PloS ONE, 10(6), e0127268.PubMedPubMedCentralGoogle Scholar
  40. Markham, A., & Altmann, J. (2008). Remote monitoring of primates using automated GPS technology in open habitats. American Journal of Primatology, 70(5), 495–499.PubMedGoogle Scholar
  41. Markham, A. C., Guttal, V., Alberts, S. C., & Altmann, J. (2013). When good neighbors don't need fences: Temporal landscape partitioning among baboon social groups. Behavioral Ecology and Sociobiology, 67(6), 875–884.PubMedPubMedCentralGoogle Scholar
  42. McKinnon, J. S., & Rundle, H. D. (2002). Speciation in nature: The threespine stickleback model systems. Trends in Ecology & Evolution, 17(10), 480–488.Google Scholar
  43. Morris, W. F., Altmann, J., Brockman, D. K., Cords, M., Fedigan, L. M., et al (2010). Low demographic variability in wild primate populations: fitness impacts of variation, covariation, and serial correlation in vital rates. The American Naturalist, 177(1), E14–E28.PubMedPubMedCentralGoogle Scholar
  44. Nagel, U. (1973). A comparison of anubis baboons, hamadryas baboons and their hybrids at a species border in Ethiopia. Folia Primatologica, 19(2–3), 104–165.Google Scholar
  45. Osada, N., Uno, Y., Mineta, K., Kameoka, Y., Takahashi, I., & Terao, K. (2010). Ancient genome-wide admixture extends beyond the current hybrid zone between Macaca fascicularis and M. mulatta. Molecular Ecology, 19(14), 2884–2895.PubMedGoogle Scholar
  46. Palombit, R. A. (2013). Papio anubis, olive baboon (Anubis baboon). In T. M. Butynski, J. Kingdon, & J. Kalina (Eds.), Mammals of Africa (Vol. 2). London: Bloomsbury.Google Scholar
  47. Phillips-Conroy, J. E., & Jolly, C. J. (1981). Sexual dimorphism in two subspecies of Ethiopian baboons (Papio hamadryas) and their hybrids. American Journal of Physical Anthropology, 56(2), 115–129.PubMedGoogle Scholar
  48. Phillips-Conroy, J. E., & Jolly, C. J. (1986). Changes in the structure of the baboon hybrid zone in the awash National Park, Ethiopia. American Journal of Physical Anthropology, 71(3), 337–350.Google Scholar
  49. Phillips-Conroy, J. E., Jolly, C. J., & Brett, F. L. (1991). Characteristics of hamadryas-like male baboons living in anubis baboon troops in the awash hybrid zone, Ethiopia. American Journal of Physical Anthropology, 86(3), 353–368.PubMedGoogle Scholar
  50. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., et al (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481), 43–49.PubMedGoogle Scholar
  51. R Core Team (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  52. Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352.Google Scholar
  53. Samuels, A., & Altmann, J. (1986). Immigration of a Papio anubis male into a group of Papio cynocephalus baboons and evidence for an anubis-cynocephalus hybrid zone in Amboseli, Kenya. International Journal of Primatology, 7(2), 131–138.Google Scholar
  54. Sankararaman, S., Patterson, N., Li, H., Pääbo, S., & Reich, D. (2012). The date of interbreeding between Neandertals and modern humans. PLoS Genetics, 8(10), e1002947.PubMedPubMedCentralGoogle Scholar
  55. Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323(5915), 737–741.PubMedGoogle Scholar
  56. Schott, F. A., Xie, S. P., & McCreary, J. P. (2009). Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1), RG1002.Google Scholar
  57. Seehausen, O., Takimoto, G., Roy, D., & Jokela, J. (2008). Speciation reversal and biodiversity dynamics with hybridization in changing environments. Molecular Ecology, 17(1), 30–44.PubMedGoogle Scholar
  58. Ségurel, L., & Quintana-Murci, L. (2014). Preserving immune diversity through ancient inheritance and admixture. Current Opinion in Immunology, 30, 79–84.PubMedGoogle Scholar
  59. Shurtliff, Q. R., Murphy, P. J., & Matocq, M. D. (2014). Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale. Evolution, 68(3), 729–742.PubMedGoogle Scholar
  60. Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C., & Couzin, I. D. (2017). Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. eLife, 6, e19505.PubMedPubMedCentralGoogle Scholar
  61. Svardal, H., Jasinska, A., Apetrei, C., Coppola, G., Huang, Y., et al. (2016). Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. bioRxiv, 088989.Google Scholar
  62. Taylor, S. A., White, T. A., Hochachka, W. M., Ferretti, V., Curry, R. L., & Lovette, I. (2014). Climate-mediated movement of an avian hybrid zone. Current Biology, 24(6), 671–676.PubMedGoogle Scholar
  63. Tung, J., Charpentier, M. J. E., Garfield, D. A., Altmann, J., & Alberts, S. C. (2008). Genetic evidence reveals temporal change in hybridization patterns in a wild baboon population. Molecular Ecology, 17(8), 1998–2011.PubMedGoogle Scholar
  64. Tung, J., Charpentier, M. J., Mukherjee, S., Altmann, J., & Alberts, S. C. (2012). Genetic effects on mating success and partner choice in a social mammal. American Naturalist, 180(1), 113–129.PubMedGoogle Scholar
  65. Wall, J. D., & Brandt, D. Y. C. (2016). Archaic admixture in human history. Current Opinion in Genetics & Development, 41, 93–97.Google Scholar
  66. Wall, J. D., Schlebusch, S. A., Alberts, S. C., Cox, L. A., Snyder-Mackler, N., et al (2016). Genomewide ancestry and divergence patterns from low-coverage sequencing data reveal a complex history of admixture in wild baboons. Molecular Ecology, 25(14), 3469–3483.PubMedPubMedCentralGoogle Scholar
  67. Winder, I. C. (2015). The biogeography of the Papio baboons: a GIS-based analysis of range characteristics and variability. Folia Primatologica, 85(5), 292–318.Google Scholar
  68. Zinner, D., Groeneveld, L. F., Keller, C., & Roos, C. (2009). Mitochondrial phylogeography of baboons (Papio spp.): indication for introgressive hybridization? BMC Evolutionary Biology, 9(1), 83.PubMedPubMedCentralGoogle Scholar
  69. Zinner, D., Arnold, M. L., & Roos, C. (2011a). The strange blood: natural hybridization in primates. Evolutionary Anthropology: Issues, News, and Reviews, 20(3), 96–103.Google Scholar
  70. Zinner, D., Buba, U., Nash, S., & Roos, C. (2011b). Pan-African voyagers: the phylogeography of baboons. In Primates of Gashaka (pp. 319–358). Developments in primatology: Progress and prospects. New York: Springer Science+Business Media.Google Scholar
  71. Zinner, D., Wertheimer, J., Liedigk, R., Groeneveld, L. F., & Roos, C. (2013). Baboon phylogeny as inferred from complete mitochondrial genomes. American Journal of Physical Anthropology, 150(1), 133–140.PubMedPubMedCentralGoogle Scholar
  72. Zinner, D., Keller, C., Nyahongo, J. W., Butynski, T. M., de Jong, Y. A., et al (2015). Distribution of mitochondrial clades and morphotypes of baboons Papio spp.(Primates: Cercopithecidae) in Eastern Africa. Journal of East African Natural History, 104(1–2), 143–168.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Geomatic Engineering and Geospatial Information SystemsJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
  2. 2.Department of Veterinary Anatomy and PhysiologyUniversity of NairobiNairobiKenya
  3. 3.Department of Geomatic and Geospatial Information SystemsDedan Kimathi University of TechnologyNyeriKenya
  4. 4.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  5. 5.Institute of Primate ResearchNairobiKenya
  6. 6.Department of Evolutionary AnthropologyDuke UniversityDurhamUSA
  7. 7.Department of BiologyDuke UniversityDurhamUSA
  8. 8.Duke University Population Research InstituteDuke UniversityDurhamUSA

Personalised recommendations