Advertisement

International Journal of Primatology

, Volume 38, Issue 6, pp 1120–1129 | Cite as

How Aging Affects Grasping Behavior and Pull Strength in Captive Gray Mouse Lemurs (Microcebus murinus)

  • Marie Le Brazidec
  • Anthony Herrel
  • Pauline Thomas
  • Boulinguez-Ambroise Grégoire
  • Fabienne Aujard
  • Emmanuelle PouydebatEmail author
Article

Abstract

Prehension is essential for animal survival and fitness. It is involved in locomotion and feeding behavior and subject to physical and physiological constraints. Studies of prehension in primates have explored the importance of food properties and of the environment, but aging has rarely been studied although prehensile capacity may deteriorate with age in humans. To test the hypothesis that aging affects grasping abilities and to reveal possible behavioral adaptations to this, we quantified behavioral grasping strategies and pull strength in 10 young adult (2–3 yr old) and 10 aged (7–8 yr old) gray mouse lemurs (Microcebus murinus). We assessed grasping strategies in an experimental cage by quantifying grip types used to grasp static and mobile foods. We measured strength using a Kistler triaxial force platform. Our results show that 1) mobile and static foods affected individuals of different ages in similar ways; 2) older individuals used more mouth grasps than young ones; 3) aged individuals made twice as many attempts as young ones when grasping mobile food items but this difference was not significant; and 4) there were no differences in hand grip strength between age classes but young individuals showed a higher foot pull strength compared to old ones. These data suggest that the observed differences in behavior may be due to a decrease in foot grip strength, which in turn influences stability on narrow branches, forcing animals to use their hands to maintain stability and preventing them from using their hands for food-related tasks.

Keywords

Aging Food grasping Grip strength Microcebus murinus Prehension 

Notes

Acknowledgments

We acknowledge the editor-in chief Joanna M. Setchell and the reviewers for their great help in the improvement of the manuscript. We are grateful to Eric Gueton for his help in the manipulation of the gray mouse lemur. We thank Martine Perret and Isabelle Hardy for their invaluable information regarding the individuals studied. This work was funded through an Action Transversale du Muséum program (E. Pouydebat, MNHN, France).

References

  1. Allen, E. N., & Cavanaugh, J. E. (2014). Loss of motor coordination in an aging mouse model. Behavioural Brain Research, 267, 119–125.CrossRefPubMedGoogle Scholar
  2. Bearzatto, B., Servais, L., Cheron, G., & Schiffmann, S. N. (2005). Age dependence of strain determinant on mice motor coordination. Brain Research, 1039, 37–42.CrossRefPubMedGoogle Scholar
  3. Bons, N., Mestre, N., & Petter, A. (1992). Seniles plaques and neurofibrillary changes in the brain of an aged lemurian primate Microcebus murinus. Neurobiology of Aging, 13, 99–105.CrossRefPubMedGoogle Scholar
  4. Butterworth, G., & Hopkins, B. (1988). Hand–mouth coordination in the new-born baby. Developmental Psychology, 6(4), 303–314.CrossRefGoogle Scholar
  5. Byron, C., Kunz, H., Matuszek, H., Lewis, S., & VanValkinburgh, D. (2011). Rudimentary pedal grasping in mice and implications for terminal branch arboreal quadrupedalism. The Journal of Morphology, 272, 230–240.CrossRefPubMedGoogle Scholar
  6. Byron, C. D., VanValkinburgh, D., Northcutt, K., & Young, V. (2013). Plasticity in the cerebellum and primary somatosensory cortex relating to habitual and continuous slender branch climbing in laboratory mice (Mus musculus). The Anatomical Record, 296, 822–833.CrossRefPubMedGoogle Scholar
  7. Byron, C. D., Herrel, A., Pauwels, E., De Muynck, A., & Patel, B. (2015). Mouse hallucal metatarsal cross-sectional geometry in a simulated fine branch niche. The Journal of Morphology, 276(7), 759–765.CrossRefPubMedGoogle Scholar
  8. Campbell, M. J., Mccomas, A. J., & Petito, F. (1973). Physiological changes in ageing muscles. Journal of Neurology Neurosurgery and Psychiatry, 36, 174–182.CrossRefGoogle Scholar
  9. Carmeli, E., Patish, H., & Coleman, R. (2003). The aging hand. Journal of Gerontology, 58(2), M146–M152.Google Scholar
  10. Cartmill, M. (1974). Pads and claws in arboreal locomotion. In: F. A. Jenkins (Ed.), Primate locomotion. New York: Academic Press pp. 45–83.Google Scholar
  11. Cherin, P. (2011). Age-related loss of muscle mass: Sarcopenia and camptocormia. Neurologie-Psychiatrie-Geriatrie, 11(62), 70–75.CrossRefGoogle Scholar
  12. Hämäläinen, A., Dammhahn, M., Aujard, F., Eberle, M., Hardy, I., et al (2015). Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of small-bodied primates. Proceedings of the Royal Society, 281, 20140830.CrossRefGoogle Scholar
  13. Kapandji, A. I. (1989). Prehension of the human hand. Annales de la Chirurgie de la Main, 8(3), 234–241.CrossRefGoogle Scholar
  14. Karl, J. M., & Whishaw, I. Q. (2013). Different evolutionary origins for the reach and the grasp: An explanation for dual visuomotor channels in primate parietofrontal cortex. Frontiers in Neurology, 4, 208.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kinoshita, H., & Francis, P. R. (1996). A comparison of prehension force control in young and elderly individuals. European Journal of Applied Physiology and Occupational Physiology, 74(5), 450–460.CrossRefPubMedGoogle Scholar
  16. Languille, S., Blanc, S., Blin, O., Canale, C. I., Dal-Pan, A., et al (2012). The grey mouse lemur: A non-human primate model for ageing studies. Ageing Research Reviews, 11, 150–162.CrossRefPubMedGoogle Scholar
  17. Languille, S., Liévin-Bazin, A., Picq, J. L., Louis, C., Dix, S., De Barry, J., Blin, O., Richardson, J., Bordet, R., Schenker, E., Djelti, F., Aujard, F. (2015). Deficits of psychomotor and mnesic functions across aging in mouse lemur primates. Frontiers in Behavioral Neuroscience.  https://doi.org/10.3389/fnbeh.2014.00446.
  18. Némoz-Bertholet, F., & Aujard, F. (2003). Physical activity and balance performance as a function of age in a prosimian primate (Microcebus murinus). Experimental Gerontology, 38, 407–414.CrossRefPubMedGoogle Scholar
  19. Némoz-Bertholet, F., Menaker, M., & Aujard, F. (2004). Are age-related deficits in balance performance mediated by time of day in a prosimian primate (Microcebus Murinus)? Experimental Gerontology, 39, 841–848.CrossRefPubMedGoogle Scholar
  20. Parfitt, G., Hargreaves, E. A., & Markland, D. (2000). The effect of prescribed and preferred intensity exercise on the psychological affect and the influence of baseline measures of affect. Journal of Health Psychology, 5(2), 231–240.CrossRefPubMedGoogle Scholar
  21. Perret, M., & Aujard, A. (2005). Aging and season affect plasma dehydroepiandrosterone sulfate (DHEA-S) levels in a primate. Experimental Gerontology, 40, 582–587.CrossRefPubMedGoogle Scholar
  22. Picq, J. L. (2007). Aging affects executive functions and memory in mouse lemur primates. Experimental Gerontology, 42(3), 223–232.CrossRefPubMedGoogle Scholar
  23. Picq, J. L., Aujard, F., Volk, A., & Dhenain, M. (2012). Age-related cerebral atrophy in nonhuman primates predicts cognitive impairments. Neurobiology of Aging, 33(6), 1096–1109.CrossRefPubMedGoogle Scholar
  24. Pifferi, F., Dal-Pan, A., Languille, S., & Aujard, F. (2013). Effects of resveratrol on daily rhythms of locomotor activity and body temperature in young and aged grey mouse lemurs. Oxydative Medicine and Cellular Longevity, 2013, 187301.Google Scholar
  25. Pouydebat, E., Coppens, Y., & Gorce, P. (2006). Évolution de la préhension chez les primates humains et non humains : La précision et l'utilisation d'outils revisitées. L’Anthropologie, 110, 687–697.CrossRefGoogle Scholar
  26. Pouydebat, E., Gorce, P., & Bels, V. (2009). Biomechanical study of grasping according to the volume of the object: Human versus nonhuman primates. Journal of Biomechanics, 42(3–9), 266–272.CrossRefPubMedGoogle Scholar
  27. Pouydebat, E., Reghem, E., Borel, A., & Gorce, P. (2011). Diversity of grip in adults and young humans and chimpanzees (Pan troglodytes). Behavioural Brain Research, 218, 21–28.CrossRefPubMedGoogle Scholar
  28. Reghem, E., Tia, B., Bels, V., & Pouydebat, E. (2011). Food prehension and manipulation in Microcebus murinus (Prosimii, Cheirogaleidae). Folia Primatologica, 82, 177–188.CrossRefGoogle Scholar
  29. Scheumann, M., Joly-Radko, M., Leliveld, L., & Zimmermann, E. (2011). Does body posture influence hand preference in an ancestral primate model? Evolutionary Biology, 11, 1471–2148.Google Scholar
  30. Spinozzi, G., Truppa, V., & Lagana, T. (2004). Grasping behavior in tufted capuchin monkeys (Cebus apella): Grip types and manual laterality for picking up a small food item. American Journal of Physical Anthropology, 125, 30–41.CrossRefPubMedGoogle Scholar
  31. Sustaita, D., Pouydebat, E., Abdala, V., Manzano, A., & Herrel, A. (2013). Getting a grip on tetrapod grasping: Form, function and evolution. Biological Reviews, 88(2), 380–405.CrossRefPubMedGoogle Scholar
  32. Thomas, P., Pouydebat, E., Lebrazidec, M., Aujard, F., & Herrel, A. (2016). Determinants of pull strength in captive grey mouse lemurs (Microcebus murinus). Journal of Zoology, 298(2), 77–81.CrossRefGoogle Scholar
  33. Toussaint, S., Reghem, E., Chotard, H., Herrel, A., Ross, C. F., & Pouydebat, E. (2013). Food acquisition on arboreal substrates by the grey mouse lemur: Implication for primate grasping evolution. Journal of Zoology, 291, 235–242.CrossRefGoogle Scholar
  34. Toussaint, S., Herrel, A., Ross, C. F., Aujard, F., & Pouydebat, E. (2015). The use of substrate diameter and orientation in the context of food type in the mouse lemur, Microcebus murinus: Implications for the origins of grasping in primates. International Journal of Primatology, 36(3), 583–604.CrossRefGoogle Scholar
  35. Warrant, E. J. (2008). Seeing in the dark: Vision and visual behaviour in nocturnal bees and wasps. The Journal of Experimental Biology, 211, 1737–1746.CrossRefPubMedGoogle Scholar
  36. Yoxall, A., Luxmoore, J., & Rowson, J. (2008). Further studies in hand-pack interaction using computer simulation. Packaging Technology and Science, 21, 61–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.UMR 7179 C.N.R.S/M.N.H.N., Département d’Ecologie et de Gestion de la BiodiversitéParisFrance

Personalised recommendations