International Journal of Primatology

, Volume 37, Issue 6, pp 688–702 | Cite as

Population and Conservation Genetics in an Endangered Lemur, Indri indri, Across Three Forest Reserves in Madagascar

  • Schyler O. Nunziata
  • Peter Wallenhorst
  • Meredith A. Barrett
  • Randall E. Junge
  • Anne D. Yoder
  • David W. Weisrock
Article

Abstract

Population decline and fragmentation often lead to reduced genetic diversity and population differentiation. Habitat destruction throughout Madagascar has caused population decline and extinction of many endemic species. Lemur populations, including those of the largest extant lemur, Indri indri, have been fragmented into remaining forest patches. We assessed the level of genetic diversity in indri populations in three protected reserves by genotyping a total of 43 individuals at 17 microsatellite loci. Genetic diversity in terms of heterozygosity was high in all three reserves, with no differences between reserves. Population structure and FST analyses revealed Analamazaotra Forest Station and the Torotorofotsy Conservation Area, which are separated by ca. 18 km to be genetically differentiated from each other with some admixture. Betampona Strict Nature Reserve, which is separated from the other reserves by ca. 130 km, exhibited clear population genetic differentiation, with no signs of admixture with the other reserves. Our genetic diversity estimates are similar to those for other Indridae in similar habitats and may reflect past rather than current population processes, given that populations have declined recently. Our results suggest that Betampona may be genetically isolated and that it is important to maintain gene flow between remaining populations to prevent loss of genetic diversity for the future conservation of Indri indri.

Keywords

Bottleneck Habitat fragmentation Microsatellite 

Supplementary material

10764_2016_9932_MOESM1_ESM.docx (90 kb)
ESM 1Supporting information with priors used for MSVAR analysis (Table SI), and pairwise FST 95% confidence interval values calculated from the full data set and a data set that excluded potential null alleles (Table SII) are available online. (DOCX 89 kb)

References

  1. Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11(10), 697–709.CrossRefPubMedGoogle Scholar
  2. Andriaholinirina, N., Baden, A., Blanco, M., Chikhi, L., Cooke, A., et al. (2014). Indri indri. The IUCN Red List of Threatened Species. Version 2014.3. www.iucnredlist.org. Accessed 24 Nov 2014.
  3. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bonhomme, F. (1996). GENETIX 4.05, logiciel sous Windows® pour la génétique des populations. Laboratoire génome, populations, interactions, CNRS UMR, 5000, 1996–2004.Google Scholar
  4. Bellemain, E., Nawaz, M. A., Valentini, A., Swenson, J. E., & Taberlet, P. (2007). Genetic tracking of the brown bear in northern Pakistan and implications for conservation. Biological Conservation, 134(4), 537–547.CrossRefGoogle Scholar
  5. Britt, A., Randriamandratonirina, N. J., Glasscock, K. D., & Iambana, B. R. (2003). Diet and feeding behaviour of Indri indri in a low-altitude rain forest. Folia Primatologica, 73(5), 225–239.CrossRefGoogle Scholar
  6. Chapuis, M. P., & Estoup, A. (2007). Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24(3), 621–631.CrossRefPubMedGoogle Scholar
  7. Chapuis, M. P., Lecoq, M., Michalakis, Y., Loiseau, A., Sword, G. A., et al. (2008). Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Molecular Ecology, 17(16), 3640–3653.CrossRefPubMedGoogle Scholar
  8. Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B., & Beaumont, M. A. (2010). The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics, 186(3), 983–995.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014.PubMedPubMedCentralGoogle Scholar
  10. Craul, M., Chikhi, L., Sousa, V., Olivieri, G. L., Rabesandratana, A., et al. (2009). Influence of forest fragmentation on an endangered large-bodied lemur in northwestern Madagascar. Biological Conservation, 142(12), 2862–2871.CrossRefGoogle Scholar
  11. Curtis, J. M., & Taylor, E. B. (2004). The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biological Conservation, 115(1), 45–54.CrossRefGoogle Scholar
  12. Cushman, S. A., McKelvey, K. S., & Schwartz, M. K. (2009). Use of empirically derived source-destination models to map regional conservation corridors. Conservation Biology, 23, 368–376.CrossRefPubMedGoogle Scholar
  13. Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., & Freimer, N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91(8), 3166–3170.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8), 2611–2620.CrossRefPubMedGoogle Scholar
  15. Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567.CrossRefPubMedGoogle Scholar
  16. Frankham, R., Briscoe, D. A., & Ballou, J. D. (2002). Introduction to conservation genetics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7(4), 457–472.Google Scholar
  19. Glessner, K. D., & Britt, A. (2005). Population density and home range size of Indri indri in a protected low altitude rain forest. International Journal of Primatology, 26(4), 855–872.CrossRefGoogle Scholar
  20. Goodman, S. M., & Ganzhorn, J. U. (2004). Elevational ranges of lemurs in the humid forests of Madagascar. International Journal of Primatology, 25(2), 331–350.CrossRefGoogle Scholar
  21. Goossens, B., Chikhi, L., Ancrenaz, M., Lackman-Ancrenaz, I., Andau, P., & Bruford, M. W. (2006). Genetic signature of anthropogenic population collapse in orang-utans. PLoS Biology, 4(2), e25.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86(6), 485–486.Google Scholar
  23. Groves, C. P. (2001). Primate taxonomy. Washington, DC: Smithsonian Institution Press.Google Scholar
  24. Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D., & Hawkins, F. (2007). Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation, 34(4), 325–333.CrossRefGoogle Scholar
  25. Holmes, S. M., Baden, A. L., Brenneman, R. A., Engberg, S. E., Louis, E. E., Jr., & Johnson, S. E. (2013). Patch size and isolation influence genetic patterns in black-and-white ruffed lemur (Varecia variegata) populations. Conservation Genetics, 14(3), 615–624.CrossRefGoogle Scholar
  26. Junge, R. E., Barrett, M. A., & Yoder, A. D. (2011). Effects of anthropogenic disturbance on indri (Indri indri) health in Madagascar. American Journal of Primatology, 73(7), 632–642.CrossRefPubMedGoogle Scholar
  27. Jungers, W. L., Godfrey, L. R., Simons, E. L., & Chatrath, P. S. (1995). Subfossil Indri indri from the Ankarana Massif of northern Madagascar. American Journal of Physical Anthropology, 97(4), 357–366.CrossRefPubMedGoogle Scholar
  28. Keyghobadi, N., Roland, J., Matter, S. F., & Strobeck, C. (2005). Among-and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proceedings of the Royal Society B: Biological Sciences, 272(1562), 553–560.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kindlmann, P., & Burel, F. (2008). Connectivity measures: a review. Landscape Ecology, 23(8), 879–890.Google Scholar
  30. Lawler, R. R. (2011). Historical demography of a wild lemur population (Propithecus verreauxi) in southwest Madagascar. Population Ecology, 53(1), 229–240.CrossRefGoogle Scholar
  31. Lawler, R. R., Richard, A. F., & Riley, M. A. (2001). Characterization and screening of microsatellite loci in a wild lemur population (Propithecus verreauxi verreauxi). American Journal of Primatology, 55(4), 253–259.CrossRefPubMedGoogle Scholar
  32. Lippe, C., Dumont, P., & Bernatchez, L. (2006). High genetic diversity and no inbreeding in the endangered copper redhorse, Moxostoma hubbsi (Catostomidae, Pisces): the positive sides of a long generation time. Molecular Ecology, 15(7), 1769–1780.CrossRefPubMedGoogle Scholar
  33. Mittermeier, R. A., Louis, E., Hawkins, F., Langrand, O., Ganzhorn, J., et al. (2010). Lemurs of Madagascar (3rd ed.). Arlington, VA: Conservation International.Google Scholar
  34. Nei, M., Maruyama, T., & Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.CrossRefGoogle Scholar
  35. Olivieri, G. L., Sousa, V., Chikhi, L., & Radespiel, U. (2008). From genetic diversity and structure to conservation: Genetic signature of recent population declines in three mouse lemur species (Microcebus spp.). Biological Conservation, 141, 1257–1271.CrossRefGoogle Scholar
  36. Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295.CrossRefGoogle Scholar
  37. Piry, S., Luikart, G., & Cornuet, J. M. (1999). BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. The Journal of Heredity, 90(4), 502–503.CrossRefGoogle Scholar
  38. Pollock, J. (1977). The ecology and sociology of feeding in Indri indri. In T. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes (pp. 37–69). London: Academic.CrossRefGoogle Scholar
  39. Pollock, J.I. (1975). Field observations on Indri indri: A preliminary report. In Lemur biology (pp. 287–311). New York: Springer-Verlag.Google Scholar
  40. Pollock, J. I. (1979). Spatial distribution and ranging behavior in lemurs. In G. A. Doyle (Ed.), The study of prosimian behavior (pp. 359–409). New York: Academic.CrossRefGoogle Scholar
  41. Powzyk, J. A. (1997). The socio-ecology of two sympatric indrids, Propithecus diadema diadema and Indri indri: A comparison of feeding strategies and their possible repercussions on species-specific behaviors. Ph. D. dissertation, Duke University.Google Scholar
  42. Powzyk, J., & Thalmann, U. (2003). Indri indri, indri. In S. M. Goodman & J. P. Benstead (Eds.), The natural history of Madagascar (pp. 1342–1345). Chicago: University of Chicago Press.Google Scholar
  43. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.PubMedPubMedCentralGoogle Scholar
  44. Quéméré, E., Amelot, X., Pierson, J., Crouau-Roy, B., & Chikhi, L. (2012). Genetic data suggest a natural prehuman origin of open habitats in northern Madagascar and question the deforestation narrative in this region. Proceedings of the National Academy of Sciences of the United States of America, 109(32), 13028–13033.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Quéméré, E., Louis, E. E., Jr., Ribéron, A., Chikhi, L., & Crouau-Roy, B. (2010). Non-invasive conservation genetics of the critically endangered golden-crowned sifaka (Propithecus tattersalli): high diversity and significant genetic differentiation over a small range. Conservation Genetics, 11(3), 675–687.Google Scholar
  46. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  47. Rakotoarisoa, G., Shore, G., Mcguire, S., Engberg, S., Louis, E., & Brenneman, R. (2006). Characterization of 20 microsatellite marker loci in Coquerel’s sifaka (Propithecus coquereli). Molecular Ecology Notes, 6(4), 1119–1121.CrossRefGoogle Scholar
  48. Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248–249.Google Scholar
  49. Razakamaharavo, V. R., McGuire, S. M., Vasey, N., Louis, E. E., Jr., & Brenneman, R. A. (2010). Genetic architecture of two red ruffed lemur (Varecia rubra) populations of Masoala National Park. Primates, 51(1), 53–61.CrossRefPubMedGoogle Scholar
  50. Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233–234.CrossRefPubMedGoogle Scholar
  51. Städler, T., Haubold, B., Merino, C., Stephan, W., & Pfaffelhuber, P. (2009). The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics, 182(1), 205–216.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Storz, J. F., & Beaumont, M. A. (2002). Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution, 56(1), 154–166.CrossRefPubMedGoogle Scholar
  53. Templeton, A. R., Shaw, K., Routman, E., & Davis, S. K. (1990). The genetic consequences of habitat fragmentation. Annals of the Missouri Botanical Garden, 77(1), 13–27.Google Scholar
  54. Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., & Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538.CrossRefGoogle Scholar
  55. Weir, B.S., & Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358–1370.Google Scholar
  56. Whitlock, M. C., & McCauley, D. E. (1999). Indirect measures of gene flow and migration: FST ≠ 1/(4Nm + 1). Heredity, 82, 117–125.CrossRefPubMedGoogle Scholar
  57. Zaonarivelo, J. R., Sommer, J. A., Shore, G. E., McGuire, S. M., Engberg, S. E., et al. (2007). Isolation and characterization of 20 microsatellite marker loci from the Indri (Indri indri) genome. Molecular Ecology Notes, 7(1), 25–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Schyler O. Nunziata
    • 1
  • Peter Wallenhorst
    • 1
  • Meredith A. Barrett
    • 2
    • 3
  • Randall E. Junge
    • 4
  • Anne D. Yoder
    • 2
  • David W. Weisrock
    • 1
  1. 1.Department of BiologyUniversity of KentuckyLexingtonUSA
  2. 2.Department of BiologyDuke UniversityDurhamUSA
  3. 3.Center for Health & CommunityUniversity of CaliforniaSan FranciscoUSA
  4. 4.Columbus Zoo and AquariumColumbusUSA

Personalised recommendations