International Journal of Primatology

, Volume 37, Issue 4–5, pp 495–517 | Cite as

Measuring Microhabitat Temperature in Arboreal Primates: A Comparison of On-Animal and Stationary Approaches

  • Cynthia L. Thompson
  • Susan H. Williams
  • Kenneth E. Glander
  • Christopher J. Vinyard
Article

Abstract

Arboreal primates actively navigate a complex thermal environment that exhibits spatial, daily, and seasonal temperature changes. Thus, temperature measurements from stationary recording devices in or near a forest likely do not reflect the thermal microenvironments that primates actually experience. To better understand the thermal variation primates encounter, we attached automated temperature loggers to anklets worn by free-ranging mantled howling monkeys (Alouatta palliata) to record near-animal ambient temperatures. We compared these measures to conventional, stationary temperature measurements taken from within the forest, in nearby open fields, and at a remote weather station 38.6 km from the field site. We also measured temperatures across vertical forest heights and assessed the effects of wind speed, solar radiation, rain, and vapor pressure on primate subcutaneous temperatures (collected via implanted loggers). Ambient temperatures at measurement sites commonly used by researchers differed from those experienced by animals. Moreover, these differences changed between seasons, indicating dynamic shifts in thermal environment occur through space and time. Temperatures increased with height in the forest, with statistically significant, albeit low magnitude, differences between vertical distances of one meter. Near-animal temperatures showed that monkeys selected relatively warmer microhabitats during nighttime temperature lows and relatively cooler microhabitats during the day. Lastly, the thermal variables wind speed, solar radiation, vapor pressure, and rain were statistically associated with primate subcutaneous temperatures. Our data indicate that the temperatures arboreal primates experience are not well reflected by stationary devices. Attaching automated temperature loggers to animals provides a useful tool for more directly assessing primate microhabitat use.

Keywords

Behavioral thermoregulation Climate Microclimate Temperature measurement Thermal environment Thermoregulation 

Notes

Acknowledgments

We thank Don Fernando Estrada and the Hacienda La Pacifica Board of Directors for permission to conduct research on their land. We also thank Mark Teaford for his extensive input on the manuscript, as well as Eduardo Fernandez-Duque and two anonymous reviewers for their helpful comments. P. Cofey, D. Mijatovic, E. Naylor, C. Scheidel, and J. Sidote provided assistance in the field. Ohio University and the Duke Arts and Sciences Council provided funding.

Supplementary material

10764_2016_9917_MOESM1_ESM.docx (57 kb)
ESM 1 (DOCX 56 kb)

References

  1. Agetsuma, N. (1995). Dietary selection by Yakushima macaques (Macaca fuscata yakui): the influence of food availability and temperature. International Journal of Primatology, 15(5), 611–627.CrossRefGoogle Scholar
  2. Bakken, G. S., Santee, W. R., & Erskine, D. J. (1985). Operative and standard operative temperature: tools for thermal energetics studies. American Zoologist, 25(4), 933–943.CrossRefGoogle Scholar
  3. Baoping, R., Ming, L., Yongcheng, L., & Fuwen, W. (2009). Influence of day length, ambient temperature, and seasonality on daily travel distance in the Yunnan snub-nosed monkey at Jinsichang, Yunnan, China. American Journal of Primatology, 71(3), 233–241.CrossRefPubMedGoogle Scholar
  4. Barradas, V., & Fanjul, L. (1986). Microclimatic characterization of shaded and open-grown coffee (Coffea arabica) plantations in Mexico. Agricultural and Forest Meteorology, 38, 101–112.CrossRefGoogle Scholar
  5. Beehner, J. C., Onderdonk, D. A., Alberts, S. C., & Altmann, J. (2006). The ecology of conception and pregnancy failure in wild baboons. Behavioral Ecology, 17(5), 741–750.CrossRefGoogle Scholar
  6. Bicca-Marques, J. C., & Calegaro-Marques, C. (1998). Behavioral thermoregulation in a sexually and developmentally dichromatic Neotropical primate, the black-and-gold howling monkey (Alouatta caraya). American Journal of Physical Anthropology, 106(4), 533–546.CrossRefPubMedGoogle Scholar
  7. Brabyn, L., Zawar-Reza, P., Stichbury, G., Cary, C., Storey, B., et al. (2014). Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data. Environmental Monitoring and Assessment, 186(4), 2619–2628.CrossRefPubMedGoogle Scholar
  8. Briscoe, N. J., Handasyde, K. A., Griffiths, S. R., Porter, W. P., Krockenberger, A., & Kearney, M. R. (2014). Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biology Letters, 10, 20140235.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Campos, F. A., & Fedigan, L. M. (2009). Behavioral adaptations to heat stress and water scarcity in white-faced capuchins (Cebus capucinus) in Santa Rosa National Park, Costa Rica. American Journal of Physical Anthropology, 138(1), 101–111.CrossRefPubMedGoogle Scholar
  10. Chiarello, A. G. (1995). Grooming in brown howler monkeys, Alouatta fusca. American Journal of Primatology, 35(1), 73–81.CrossRefGoogle Scholar
  11. Clutton-Brock, T. (1973). Feeding levels and feeding sites of red colobus (Colobus badius tephrosceles) in the Gombe National Park. Folia Primatologica, 19(5), 368–379.CrossRefGoogle Scholar
  12. Daubenmire, R. (1972). Phenology and other characteristics of tropical semi-deciduous forest in north-western Costa Rica. Journal of Ecology, 60(1), 147–170.CrossRefGoogle Scholar
  13. Dausmann, K. H. (2005). Measuring body temperature in the field—evaluation of external vs. implanted transmitters in a small mammal. Journal of Thermal Biology, 30(3), 195–202.CrossRefGoogle Scholar
  14. Dausmann, K. H., Glos, J., Ganzhorn, J. U., & Heldmaier, G. (2005). Hibernation in the tropics: lessons from a primate. Journal of Comparative Physiology B, 175(3), 147–155.CrossRefGoogle Scholar
  15. Dausmann, K., Glos, J., & Heldmaier, G. (2009). Energetics of tropical hibernation. Journal of Comparative Physiology B, 179(3), 345–357.CrossRefGoogle Scholar
  16. De la Fuente, M. F. C., Souto, A., Sampaio, M. B., & Schiel, N. (2014). Behavioral adjustments by a small Neotropical primate (Callithrix jacchus) in a semiarid caatinga environment. The Scientific World Journal, 2014, 326524.PubMedPubMedCentralGoogle Scholar
  17. Donati, G., Ricci, E., Baldi, N., Morelli, V., & Borgognini‐Tarli, S. M. (2011). Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: effects of climatic and dietary‐related factors. American Journal of Physical Anthropology, 144(3), 355–364.CrossRefPubMedGoogle Scholar
  18. Fedigan, L., & Griffin, L. (1996). The Arashiyama West Japanese macaques. In J. E. Fa & D. G. Lindburg (Eds.), Evolution and ecology of macaque societies (pp. 369–388). Cambridge: Cambridge University Press.Google Scholar
  19. Fernandez-Duque, E. (2003). Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azarai). Behavioral Ecology and Sociobiology, 54(5), 431–440.CrossRefGoogle Scholar
  20. Ferreira-Ferreira, J., Silva, T. S. F., Streher, A. S., Affonso, A. G., Furtado, L. F. A., et al. (2015). Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil. Wetlands Ecology and Management, 23(1), 41–59.CrossRefGoogle Scholar
  21. Fetcher, N., Oberbauer, S., & Strain, B. (1985). Vegetation effects on microclimate in lowland tropical forest in Costa Rica. International Journal of Biometeorology, 29(2), 145–155.CrossRefGoogle Scholar
  22. Gestich, C. C., Caselli, C. B., & Setz, E. Z. (2014). Behavioural thermoregulation in a small Neotropical primate. Ethology, 120(4), 331–339.CrossRefGoogle Scholar
  23. Glander, K. E. (1975). Habitat description and resource utilization: a preliminary report on mantled howling monkey ecology. In R. H. Tuttle (Ed.), Socioecology and psychology of primates (pp. 37–57). The Hague: Mouton.Google Scholar
  24. Glander, K. E., & Nisbett, R. A. (1996). Community structure and species diversity in tropical forest associations at Hacienda La Pacifica in Guanacaste Province, Costa Rica. Brenesia, 45–46, 113–142.Google Scholar
  25. Glander, K. E., Fedigan, L. M., Fedigan, L., & Chapman, C. (1991). Field methods for capture and measurement of three monkey species in Costa Rica. Folia Primatologica, 57, 70–82.CrossRefGoogle Scholar
  26. Hanya, G. (2004). Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: effects of food and temperature. American Journal of Primatology, 63(3), 165–177.CrossRefPubMedGoogle Scholar
  27. Hanya, G., Kiyono, M., & Hayaishi, S. (2007). Behavioral thermoregulation of wild Japanese macaques: comparisons between two subpopulations. American Journal of Primatology, 69(7), 802–815.CrossRefPubMedGoogle Scholar
  28. Harrison, M. (1985). Time budget of the green monkey, Cercopithecus sabaeus: some optimal strategies. International Journal of Primatology, 6(4), 351–376.CrossRefGoogle Scholar
  29. Hester, E. T., & Bauman, K. S. (2013). Stream and retention pond thermal response to heated summer runoff from urban impervious surfaces. Journal of the American Water Resources Association, 49(2), 328–342.CrossRefGoogle Scholar
  30. Hetem, R. S., Maloney, S. K., Fuller, A., Meyer, L. C., & Mitchell, D. (2007). Validation of a biotelemetric technique, using ambulatory miniature black globe thermometers, to quantify thermoregulatory behaviour in ungulates. Journal of Experimental Zoology A, 307, 342–356.CrossRefGoogle Scholar
  31. Hill, R. A. (2006). Thermal constraints on activity scheduling and habitat choice in baboons. American Journal of Physical Anthropology, 129(2), 242–249.CrossRefPubMedGoogle Scholar
  32. Hill, R. A., Lycett, J. E., & Dunbar, R. I. M. (2000). Ecological and social determinants of birth intervals in baboons. Behavioral Ecology, 11(5), 560–564.CrossRefGoogle Scholar
  33. Hill, R., Weingrill, T., Barrett, L., & Henzi, S. P. (2004). Indices of environmental temperatures for primates in open habitats. Primates, 45(1), 7–13.CrossRefPubMedGoogle Scholar
  34. Holden, Z. A., Abatzoglou, J. T., Luce, C. H., & Baggett, L. S. (2011). Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agricultural and Forest Meteorology, 151(8), 1066–1073.CrossRefGoogle Scholar
  35. Holdridge, L. M. (1967). Life zone ecology. San Jose: Tropical Science Center.Google Scholar
  36. Johnson, G. S., & Elizondo, R. S. (1979). Thermoregulation in Macaca mulatta: a thermal balance study. Journal of Applied Physiology, 46(2), 268–277.PubMedGoogle Scholar
  37. Johnson, A. N., Boer, B. R., Woessner, W. W., Stanford, J. A., Poole, G. C., et al. (2005). Evaluation of an inexpensive small‐diameter temperature logger for documenting ground water–river interactions. Groundwater Monitoring & Remediation, 25(4), 68–74.CrossRefGoogle Scholar
  38. Kira, T., & Yoda, K. (1989). Vertical stratification in microclimate. In H. Leith & M. J. A. Werger (Eds.), Tropical rain forest ecosystems. Ecosystems of the world 14b. New York: Elsevier.Google Scholar
  39. Koops, K., McGrew, W. C., de Vries, H., & Matsuzawa, T. (2012). Nest-building by chimpanzees (Pan troglodytes verus) at Seringbara, Nimba Mountains: antipredation, thermoregulation, and antivector hypotheses. International Journal of Primatology, 33(2), 356–380.CrossRefGoogle Scholar
  40. Lewkowicz, A. G. (2008). Evaluation of miniature temperature‐loggers to monitor snowpack evolution at mountain permafrost sites, northwestern Canada. Permafrost and Periglacial Processes, 19(3), 323–331.CrossRefGoogle Scholar
  41. Limberger, D., Trillmich, F., Biebach, H., & Stevenson, R. D. (1986). Temperature regulation and microhabitat choice by free-ranging Galapagos fur seal pups (Arctocephalus galapagoensis). Oecologia, 69(1), 53–59.CrossRefGoogle Scholar
  42. Lopez, K. R., Gibbs, P. H., & Reed, D. S. (2002). A comparison of body temperature changes due to the administration of ketamine-acepromazine and tiletamine-zolazepam anesthetics in cynomolgus macaques. Journal of the American Association for Laboratory Animal Science, 41(2), 47–50.Google Scholar
  43. Lovegrove, B. (2009). Modification and miniaturization of Thermochron iButtons for surgical implantation into small animals. Journal of Comparative Physiology B, 179(4), 451–458.CrossRefGoogle Scholar
  44. Lubbe, A., Hetem, R. S., McFarland, R., Barrett, L., Henzi, P., et al. (2014). Thermoregulatory plasticity in free-ranging vervet monkeys, Chlorocebus pygerythrus. Journal of Comparative Physiology B, 184, 799–809.CrossRefGoogle Scholar
  45. Mabille, G., Berteaux, D., Thomas, D. W., & Fortin, D. (2011). Behavioural responses of wintering porcupines to their heterogeneous thermal environment. Ecoscience, 18(4), 341–353.CrossRefGoogle Scholar
  46. Martin, P., & Bateson, P. (1993). Measuring behavior: An introductory guide (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. McFarland, R., Barrett, L., Boner, R., Freeman, N. J., & Henzi, S. P. (2014). Behavioral flexibility of vervet monkeys in response to climatic and social variability. American Journal of Physical Anthropology, 154(3), 357–364.CrossRefPubMedGoogle Scholar
  48. McFarland, R., Fuller, A., Hetem, R. S., Mitchell, D., Maloney, S. K., et al. (2015). Social integration confers thermal benefits in a gregarious primate. Journal of Animal Ecology, 84(3), 871–878.CrossRefPubMedGoogle Scholar
  49. Müller, E. F. (1979). Energy metabolism, thermoregulation and water budget in the slow loris (Nycticebus coucang, Boddaert 1785). Comparative Biochemistry and Physiology. Part A, Physiology, 64(1), 109–119.CrossRefGoogle Scholar
  50. Nowack, J., Wippich, M., Mzilikazi, N., & Dausmann, K. H. (2013). Surviving the cold, dry period in Africa: behavioral adjustments as an alternative to heterothermy in the African lesser bushbaby (Galago moholi). International Journal of Primatology, 34(1), 49–64.CrossRefGoogle Scholar
  51. Ohsawa, H., & Dunbar, R. I. M. (1984). Variations in the demographic structure and dynamics of gelada baboon populations. Behavioral Ecology and Sociobiology, 15(3), 231–240.CrossRefGoogle Scholar
  52. Onset. (2015). Deploying weather stations: a best practices guide. Bourne: Onset Computer Corporation.Google Scholar
  53. Pinker, R. (1980). The microclimate of a dry tropical forest. Agricultural Meteorology, 22(3), 249–265.CrossRefGoogle Scholar
  54. Pörtner, H. O., Bennett, A. F., Bozinovic, F., Clarke, A., Lardies, M. A., et al. (2006). Trade‐offs in thermal adaptation: the need for a molecular to ecological integration. Physiological and Biochemical Zoology, 79(2), 295–313.CrossRefPubMedGoogle Scholar
  55. Pruetz, J. (2007). Evidence of cave use by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: implications for thermoregulatory behavior. Primates, 48(4), 316–319.CrossRefPubMedGoogle Scholar
  56. Raichlen, D. A., Gordon, A. D., Muchlinski, M. N., & Snodgrass, J. J. (2010). Causes and significance of variation in mammalian basal metabolism. Journal of Comparative Physiology B, 180(2), 301–311.CrossRefGoogle Scholar
  57. Refinetti, R. (2010). The circadian rhythm of body temperature. Frontiers in Bioscience: A Journal and Virtual Library, 15, 564–594.CrossRefGoogle Scholar
  58. Shi, H., Paull, D., Broome, L., & Bates, H. (2015). Microhabitat use by mountain pygmy‐possum (Burramys parvus): implications for the conservation of small mammals in alpine environments. Austral Ecology, 40(5), 528–536.CrossRefGoogle Scholar
  59. Stitt, J. T., & Hardy, J. D. (1971). Thermoregulation in the squirrel monkey (Saimiri sciureus). Journal of Applied Physiology, 31(1), 48–54.PubMedGoogle Scholar
  60. Takemoto, H. (2004). Seasonal change in terrestriality of chimpanzees in relation to microclimate in the tropical forest. American Journal of Physical Anthropology, 124(1), 81–92.CrossRefPubMedGoogle Scholar
  61. Terrien, J., Perret, M., & Aujard, F. (2011). Behavioral thermoregulation in mammals: a review. Frontiers in Bioscience: A Journal and Virtual Library, 16, 1428–1444.CrossRefGoogle Scholar
  62. Thompson, C. L., Williams, S. H., Glander, K. E., Teaford, M. F., & Vinyard, C. J. (2014). Body temperature and thermal environment in a generalized arboreal anthropoid, wild mantled howling monkeys (Alouatta palliata). American Journal of Physical Anthropology, 154, 1–10.CrossRefPubMedGoogle Scholar
  63. Tregear, R. T. (1965). Hair density, wind speed, and heat loss in mammals. Journal of Applied Physiology, 20(4), 796–801.PubMedGoogle Scholar
  64. van Schaik, C. P., & Pfannes, K. R. (2005). Tropical climates and phenology: a primate perspective. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates: studies of living and extinct human and non-human primates (pp. 23–54). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Zachariassen, J., Zeller, K., Nikolov, N., & McClelland, T. (2003). A review of the forest service remote automated weather station (RAWS) network. United States Department of Agriculture, Forest Service, General Technical Report RMRS-GTR-119.Google Scholar
  66. Zajicek, K. B., Price, C. S., Shoaf, S. E., Mehlman, P. T., Suomi, S. J., et al. (2000). Seasonal variation in CSF 5-HIAA concentrations in male rhesus macaques. Neuropsychopharmacology, 22(3), 240–250.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cynthia L. Thompson
    • 1
  • Susan H. Williams
    • 2
  • Kenneth E. Glander
    • 3
  • Christopher J. Vinyard
    • 4
  1. 1.Department of Biomedical SciencesGrand Valley State UniversityAllendaleUSA
  2. 2.Department of Biomedical SciencesOhio University Heritage College of Osteopathic MedicineAthensUSA
  3. 3.Department of Evolutionary AnthropologyDuke UniversityDurhamUSA
  4. 4.Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownUSA

Personalised recommendations