Advertisement

International Journal of Primatology

, Volume 36, Issue 6, pp 1120–1131 | Cite as

Implications of the Relationship Between Basicranial Flexion and Facial Orientation for the Evolution of Hominid Craniofacial Structures

  • Dimitri Neaux
  • Emmanuel Gilissen
  • Walter Coudyzer
  • Franck Guy
Article

Abstract

The basicranium and face have been linked through genetic, developmental, and functional relationships throughout their evolution. As a result, basicranial morphology most likely plays a major role in the evolution of facial structures. We describe the relationships between basicranial flexion and the face in Homo, Pan, and Gorilla to determine the role of cranial base angle reduction in the setup of the short and orthognathic face of Homo. We test the hypotheses that cranial base flexion plays a significant part in variation in facial orientation, length, and projection at the intraspecific level. The sample comprised 125 crania of adult specimens including 66 Homo sapiens, 32 Pan troglodytes, and 27 Gorilla gorilla. We described the cranial base and face using landmarks placed on scans of the surfaces and computed correlations between the cranial base angle and facial orientation, length, and projection. Our results support the hypotheses that cranial base flexion plays a significant part in facial orientation for Homo and Pan and in facial length for Pan. The hypothesis that basicranial flexion is related to a reduction of facial projection is not supported. The findings suggest that basicranial flexion can explain several anatomical specificities of hominins, including the reduction of prognathism and the reduction of the length of the nasopharynx. We found different patterns in the different genera, highlighting the fact that changes in the relationship between craniofacial structures may have occurred during hominid evolution.

Keywords

Cranial base Cranium Facial block Facial projection Hominin 

Notes

Acknowledgments

We thank the following institutions and people for allowing us access to their specimens or data: Mr. W. Wendelen of the Royal Museum for Central Africa (Tervuren, Belgium), Pr. C. P. E. Zollikofer and Dr. M. Ponce de León of the Anthropologisches Institut und Museum (Zürich, Switzerland), and the Natural History Museum (London). We also thank the following people and facilities for the CT scans data acquisition: the Department of Radiology of UZ Leuven (Leuven, Belgium), the Kantonsspital Winterthur (Winterthur, Switzerland), and the Hammersmith Hospital (London). We thank Pr. D. E. Lieberman and Dr. T. Bienvenu for their comments on previous versions of this work. We also thank S. Ramdarshan for his help improving the English. We thank Dr. J. Setchell and two anonymous reviewers for their valuable comments on earlier drafts of this manuscript. The Agence Nationale de la Recherche (project ANR-09-BLAN-0238) supported this work.

References

  1. Basili, C., Slavicek, R., Tajima, K., & Sato, S. (2009). A three-dimensional computerized tomography study of the relationship between cranial base angle and maxillofacial architecture in caucasic human skull. International Journal of Stomatology & Occlusion Medicine, 2(4), 205–215.CrossRefGoogle Scholar
  2. Biegert, J. (1963). The evaluation of characteristics of the skull, hands and feet for primate taxonomy. In S. L. Washburn (Ed.), Classification and human evolution (pp. 77–199). Chicago: Aldine.Google Scholar
  3. Bromage, T. G. (1992). The ontogeny of Pan troglodytes craniofacial architectural relationships and implications for early hominids. Journal of Human Evolution, 23, 235–251.CrossRefGoogle Scholar
  4. Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., et al. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418(6894), 145–151.PubMedCrossRefGoogle Scholar
  5. Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36(3), 499–516.CrossRefGoogle Scholar
  6. Cousin, R. P., Fenart, R., & Deblock, R. (1981). Variations ontogéniques des angles basicraniens et faciaux. Bulletin et Mémoires de la Société d’Anthropologie de Paris, 8, 189–212.CrossRefGoogle Scholar
  7. Enlow, D. H., & Azuma, M. (1975). Functional growth boundaries in the human and mammalian face. In D. Bergsma (Ed.), Morphogenesis and malformation of face and brain (pp. 217–230). New York: Alan R. Liss.Google Scholar
  8. Enlow, D. H., & Hans, M. G. (1996). Essentials of facial growth. Philadelphia: W. B. Saunders.Google Scholar
  9. Freidline, S. E., Gunz, P., Harvati, K., & Hublin, J.-J. (2012). Middle Pleistocene human facial morphology in an evolutionary and developmental context. Journal of Human Evolution, 63, 723–740.PubMedCrossRefGoogle Scholar
  10. Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews of the Cambridge Philosophical Society, 41, 87–640.CrossRefGoogle Scholar
  11. Guy, F., Lieberman, D. E., Pilbeam, D., Ponce de León, M., Likius, A., Mackaye, H. T., et al. (2005). Morphological affinities of the Sahelanthropus tchadensis (Late Miocene hominid from Chad) cranium. Proceedings of the National Academy of Sciences of the USA, 102(52), 18836.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kimbel, W. H., Suwa, G., Asfaw, B., Rak, Y., & White, T. D. (2014). Ardipithecus ramidus and the evolution of the human cranial base. Proceedings of the National Academy of Sciences of the USA, 111, 948–953.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Klingenberg, C. P. (2010). Evolution and development of shape: integrating quantitative approaches. Nature, 11, 623–635.Google Scholar
  14. Kuroe, K., Rosas, A., & Molleson, T. (2004). Variation in the cranial base orientation and facial skeleton in dry skulls sampled from three major populations. The European Journal of Orthodontics, 26(2), 201–207.PubMedCrossRefGoogle Scholar
  15. Lebatard, A.-E., Bourlès, D. L., Duringer, P., Jolivet, M., Braucher, R., Carcaillet, J., et al. (2008). Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad. Proceedings of the National Academy of Sciences of the USA, 105, 3226–3231.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Lieberman, D. E. (2000). Ontogeny, homology and phylogeny in the Hominid craniofacial skeleton: The problem of the browridge. In P. O’Higgins & M. Cohn (Eds.), Development, growth and evolution (pp. 85–122). London: Academic Press.Google Scholar
  17. Lieberman, D. E., & McCarthy, R. C. (1999). The ontogeny of cranial base angulation in humans and chimpanzees and its implications for reconstructing pharyngeal dimensions. Journal of Human Evolution, 36, 487–517.PubMedCrossRefGoogle Scholar
  18. Lieberman, D. E., Ross, C. F., & Ravosa, M. J. (2000). The primate cranial base: ontogeny, function and integration. Yearbook of Physical Anthropology, 48, 117–169.CrossRefGoogle Scholar
  19. Lieberman, D. E., Hallgrimsson, B., Liu, W., Parsons, T. E., & Jamniczky, A. (2008). Spatial packing, cranial base angulation, and craniofacial shape variation in the mammalian skull: testing a new model using mice. Journal of Anatomy, 212, 720–735.PubMedPubMedCentralCrossRefGoogle Scholar
  20. McCarthy, R. C. (2001). Anthropoid cranial base architecture and scaling relationships. Journal of Human Evolution, 40, 41–66.PubMedCrossRefGoogle Scholar
  21. McCarthy, R. C., & Lieberman, D. E. (2001). Posterior maxillary (PM) plane and anterior cranial architecture in primates. The Anatomical Record, 264, 247–260.PubMedCrossRefGoogle Scholar
  22. McCollum, M. A., & Ward, S. C. (1997). Subnasoalveolar anatomy and hominoid phylogeny: evidence from comparative ontogeny. American Journal of Physical Anthropology, 102, 377–405.PubMedCrossRefGoogle Scholar
  23. Neaux, D. (2013). Covariations des structures crâniofaciales chez les hominidés. Ph.D. dissertation, Université de Poitiers.Google Scholar
  24. Neaux, D., Guy, F., Gilissen, E., Coudyzer, W., Vignaud, P., & Ducrocq, S. (2013). Facial orientation and facial shape in extant great apes: a geometric morphometric analysis of covariation. PLoS ONE, 8(2), e57026.PubMedPubMedCentralCrossRefGoogle Scholar
  25. O’Higgins, P., & Dryden, I. L. (1993). Sexual dimorphism in hominoids: further studies of craniofacial shape differences in Pan, Gorilla and Pongo. Journal of Human Evolution, 24(3), 183–205.CrossRefGoogle Scholar
  26. Olson, R. L., & Miller, E. C. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  27. R Development Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  28. Rosas, A., & Bastir, M. (2002). Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. American Journal of Physical Anthropology, 117, 236–245.PubMedCrossRefGoogle Scholar
  29. Ross, C. F., & Henneberg, M. J. (1995). Basicranial flexion, relative brain size, and facial kyphosis in Homo sapiens and some fossil hominids. American Journal of Physical Anthropology, 98, 575–593.PubMedCrossRefGoogle Scholar
  30. Shea, B. T. (1985). On aspects of skull form in African apes and orangutans, with implications for hominoid evolution. American Journal of Physical Anthropology, 68, 329–342.PubMedCrossRefGoogle Scholar
  31. Simpson, E. K. (2005). Variation in cranial base flexion and craniofacial morphology in modern humans. Ph.D. dissertation. University of Adelaide.Google Scholar
  32. Singh, N., Harvati, K., Hublin, J.-J., & Klingenberg, C. P. (2012). Morphological evolution through integration: a quantitative study of cranial integration in Homo, Pan, Gorilla and Pongo. Journal of Human Evolution, 62, 155–164.PubMedCrossRefGoogle Scholar
  33. Spoor, F. (1997). Basicranial architecture and relative brain size of Sts 5 (Australopithecus africanus) and other Plio-Pleistocene hominids. South African Journal of Science, 93, 182–186.Google Scholar
  34. Suwa, G., Asfaw, B., Kono, R. T., Kubo, D., Lovejoy, C. O., & White, T. D. (2009). The Ardipithecus ramidus skull and its implications for Hominid origins. Science, 326, 68.CrossRefGoogle Scholar
  35. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.CrossRefGoogle Scholar
  36. Weidenreich, F. (1941). The brain and its rôle in the phylogenetic transformation of the human skull. Transactions of the American Philosophical Society, 31(5), 320–442.CrossRefGoogle Scholar
  37. White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., & WoldeGabriel, G. (2009). Ardipithecus ramidus and the paleobiology of early Hominids. Science, 326, 64–86.CrossRefGoogle Scholar
  38. Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, J. Y., Delson, E., et al. (2005). Evolutionnary morphing. Proceedings of IEEE Visualization 2005. http://graphics.idav.ucdavis.edu/research/projects/EvoMorph.
  39. Zollikofer, C. P. E., Ponce de León, M., Lieberman, D. E., Guy, F., Pilbeam, D., Likius, A., et al. (2005). Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature, 434, 755–759.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dimitri Neaux
    • 1
  • Emmanuel Gilissen
    • 2
    • 3
    • 4
  • Walter Coudyzer
    • 5
  • Franck Guy
    • 1
  1. 1.Institut de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements UMR CNRS 7262Université de PoitiersPoitiersFrance
  2. 2.Department of African ZoologyRoyal Museum for Central AfricaTervurenBelgium
  3. 3.Université Libre de Bruxelles, Laboratory of Histology and NeuropathologyBrusselsBelgium
  4. 4.Department of AnthropologyUniversity of ArkansasFayettevilleUSA
  5. 5.Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium

Personalised recommendations