International Journal of Primatology

, Volume 36, Issue 1, pp 177–193 | Cite as

Different Roles of Seeds and Young Leaves in the Diet of Red Leaf Monkeys (Presbytis rubicunda): Comparisons of Availability, Nutritional Properties, and Associated Feeding Behavior

  • Goro HanyaEmail author
  • Henry Bernard


It is important to clarify the roles of different types of foods in the diet of primates that switch to other foods as preferred food items become rare. Using red leaf monkeys (Presbytis rubicunda) in Danum Valley, Borneo, as an example, we compare the availability and nutritional properties of young leaves and seeds, as well as the monkeys’ feeding behavior, to examine food choice and how such choices may affect their competitive regime. Over 21 mo, the number of flushing trees was larger than that of fruiting trees. When we compared nutritional content for all species, including those that the monkeys did not eat, seeds contained more lipids than young leaves but young leaves did not have any nutritional advantage over seeds. However, when we compared only food species, young leaves contained more crude ash than seeds. The proportion of food species to the total available species was significantly higher for seeds than for young leaves. In addition, red leaf monkeys selected young leaf species with higher digestible protein, but no nutritional component predicted seed selection. Young leaves are nutritionally low-quality in general, so monkeys may need to select species with higher quality leaves. However, seeds generally have high-quality nutritional values, so it may not be necessary to select species with marginally higher quality. When eating seeds, the number of individuals eating in the patch was larger, and this feeding in the patch tended to last longer than when monkeys ate young leaves, suggesting more intense feeding competition when feeding on seeds. In conclusion, seeds and young leaves have different nutritional advantages as foods and red leaf monkeys were more selective when eating young leaves than when eating seeds.


Colobus monkeys Dietary switch Fallback foods Food selection Preferred foods 



This study would not have been possible without the hard work of our field assistants, Syamsudin Jail, Sharry bin Mustah, Saharudin Idos, Unding Jami, Sallehudin Jail, and Rayner Jupili. We are greatly indebted to the staff of the Danum Valley Field Centre and our colleagues there for their hospitality and help, in particular Jimmy Omar, Mike Bernadus, Glen Reynolds, Tomoko Kanamori, Noko Kuze, and Siew Te Wong. The editor and the reviewers of this journal provided helpful comments. The Economy Planning Unit of Malaysia and the State of Sabah and the Danum Valley Management Committee of Yayasan Sabah permitted our study. This study was financed by the JSPS Core-to-Core Program (HOPE), the MEXT Grant-in-Aid for JSPS Overseas Fellows, Grant-in-Aid for Young Scientists B (No. 20770195) and A (No. 22687002) and Scientific Research B (No. 25291100) to G. Hanya, Primate Society of Japan, and Global COE Program “Formation of a Strategic Base for Biodiversity and Evolutionary Research: from Genome to Ecosystem.”


  1. Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49(3), 227–267.CrossRefPubMedGoogle Scholar
  2. Chapman, C. A., & Chapman, L. J. (2002). Foraging challenges of red colobus monkeys: Influence of nutrients and secondary compounds. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology, 133(3), 861–875.CrossRefPubMedGoogle Scholar
  3. Chapman, C. A., Chapman, L. J., Rode, K. D., Hauck, E. M., & McDowell, L. R. (2003). Variation in the nutritional value of primate foods: Among trees, time periods, and areas. International Journal of Primatology, 24(2), 317–333.CrossRefGoogle Scholar
  4. Chapman, C. A., Wrangham, R. W., & Chapman, L. J. (1995). Ecological constraints on group size: An analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology, 36(1), 59–70.CrossRefGoogle Scholar
  5. Clutton-Brock, T. H. (1975). Feeding behaviour of red colobus and black and white colobus in East Africa. Folia Primatologica, 23, 165–207.CrossRefGoogle Scholar
  6. Clutton-Brock, T. H. (1977). Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes. Brighton, U.K.: Academic Press.Google Scholar
  7. Dasilva, G. L. (1994). Diet of Colobus polykomos on Tiwai Island: Selection of food in relation to its seasonal abundance and nutritional quality. International Journal of Primatology, 15(5), 655–680.CrossRefGoogle Scholar
  8. Davies, A. G., Oates, J. F., & Dasilva, G. L. (1999). Patterns of frugivory in three West African colobine monkeys. International Journal of Primatology, 20(3), 327–357.CrossRefGoogle Scholar
  9. DeGabriel, J. L., Wallis, I. R., Moore, B. D., & Foley, W. J. (2008). A simple, integrative assay to quantify nutritional quality of browses for herbivores. Oecologia, 156(1), 107–116.CrossRefPubMedGoogle Scholar
  10. Ehlers Smith, D. A., Ehlers Smith, Y. C., & Cheyne, S. M. (2013a). Home-range use and activity patterns of the red langur (Presbytis rubicunda) in Sabangau tropical peat-swamp forest, central Kalimantan, Indonesian Borneo. International Journal of Primatology, 34(5), 957–972.CrossRefGoogle Scholar
  11. Ehlers Smith, D. A., Husson, S. J., Ehlers Smith, Y. C., & Harrison, M. E. (2013b). Feeding ecology of red langurs in Sabangau tropical peat-swamp forest, Indonesian Borneo: Extreme granivory in a non-masting forest. American Journal of Primatology, 75(8), 848–859.CrossRefPubMedGoogle Scholar
  12. Fashing, P. J. (2001). Feeding ecology of guerezas in the Kakamega Forest, Kenya: The importance of Moraceae fruit in their diet. International Journal of Primatology, 22(4), 579–609.CrossRefGoogle Scholar
  13. Fujita, M., Matsui, K., Terakawa, M., Komai, F., Yumoto, T., & Maeto, K. (2009). Pre-dispersal seed predation of bayberry Myrica rubra by Thiotricha pancratiastis (Lepidoptera: Gelechiidae) on Yakushima Island, Japan. Entomological Science, 12(4), 427–430.CrossRefGoogle Scholar
  14. Gillespie, T. R., & Chapman, C. A. (2001). Determinants of group size in the red colobus monkey (Procolobus badius): An evaluation of the generality of the ecological-constraints model. Behavioral Ecology and Sociobiology, 50(4), 329–338.CrossRefGoogle Scholar
  15. Grueter, C. C., Li, D. Y., Ren, B. P., Wei, F. W., Xiang, Z. F., & van Schaik, C. P. (2009). Fallback foods of temperate-living primates: A case study on snub-nosed monkeys. American Journal of Physical Anthropology, 140(4), 700–715.CrossRefPubMedGoogle Scholar
  16. Hanya, G. (2004). Diet of a Japanese macaque troop in the coniferous forest of Yakushima. International Journal of Primatology, 25(1), 55–71.CrossRefGoogle Scholar
  17. Hanya, G. (2009). Effects of food type and number of feeding sites in a tree on aggression during feeding in wild Macaca fuscata. International Journal of Primatology, 30(4), 569–581.CrossRefGoogle Scholar
  18. Hanya, G., & Aiba, S. (2010). Fruit fall in tropical and temperate forests: Implications for frugivore diversity. Ecological Research, 25, 1081–1090.CrossRefGoogle Scholar
  19. Hanya, G., & Bernard, H. (2012). Fallback foods of red leaf monkeys (Presbytis rubicunda) in Danum Valley, Borneo. International Journal of Primatology, 33(2), 322–337.CrossRefGoogle Scholar
  20. Hanya, G., & Bernard, H. (2013). Functional response to fruiting seasonality by a primate seed predator, red leaf monkey (Presbytis rubicunda). Tropical Ecology, 54(3), 383–395.Google Scholar
  21. Hanya, G., & Chapman, C. A. (2013). Linking feeding ecology and population abundance: A review of food resource limitation on primates. Ecological Research, 28(2), 183–190.CrossRefGoogle Scholar
  22. Hanya, G., Kiyono, M., Yamada, A., Suzuki, K., Furukawa, M., Yoshida, Y., et al. (2006). Not only annual food abundance but also fallback food quality determines the Japanese macaque density: Evidence from seasonal variations in home range size. Primates, 47(3), 275–278.CrossRefPubMedGoogle Scholar
  23. Hanya, G., Tsuji, Y., & Grueter, C. C. (2013). Fruiting and flushing phenology in Asian tropical and temperate forests: Implications for primate ecology. Primates, 54(2), 101–110.CrossRefPubMedGoogle Scholar
  24. Hemingway, C., & Bynum, N. (2005). The influence of seasonality on primate diet and ranging. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates: Studies of living and extinct human and non-human primates (pp. 57–104). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  25. Itoh, N., & Nishida, T. (2007). Chimpanzee grouping patterns and food availability in Mahale Mountains National Park, Tanzania. Primates, 48(2), 87–96.CrossRefPubMedGoogle Scholar
  26. Janson, C., & Chapman, C. (1999). Resources and primate community structure. In J. Fleagle, C. Janson, & K. Reed (Eds.), Primate communities (pp. 237–267). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  27. Kay, R. N. B., & Davies, A. G. (1994). Digestive physiology. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 229–249). Cambridge, U.K.: Cambridge University Press.Google Scholar
  28. Kirkpatrick, R. C. (1999). Colobine diet and social organization. In P. Dolhinow & A. Fuentes (Eds.), The nonhuman primates (pp. 93–105). Mountain View, CA: Mayfield.Google Scholar
  29. Kishimoto-Yamada, K., & Itioka, T. (2008). Survival of flower-visiting chrysomelids during non general-flowering periods in Bornean dipterocarp forests. Biotropica, 40(5), 600–606.CrossRefGoogle Scholar
  30. Knott, C. D. (1998). Changes in orangutan caloric intake, energy balance, and ketones in response to fluctuating fruit availability. International Journal of Primatology, 19(6), 1061–1079.CrossRefGoogle Scholar
  31. Koenig, A., Beise, J., Chalise, M. K., & Ganzhorn, J. U. (1998). When females should contest for food: Testing hypotheses about resource density, distribution, size, and quality with Hanuman langurs (Presbytis entellus). Behavioral Ecology and Sociobiology, 42(4), 225–237.CrossRefGoogle Scholar
  32. Kool, K. M. (1993). The diet and feeding behavior of the silver leaf monkey (Trachypithecus auratus sondaicus) in Indonesia. International Journal of Primatology, 14(5), 667–700.CrossRefGoogle Scholar
  33. Kubo, T. (2012). Introduction for statistical modelling for data analysis. Tokyo: Iwanami Shoten.Google Scholar
  34. Lambert, J. E. (1998). Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evolutionary Anthropology, 7(1), 8–20.CrossRefGoogle Scholar
  35. Li, Z. Y., & Rogers, M. E. (2006). Food items consumed by white-headed langurs in Fusui, China. International Journal of Primatology, 27(6), 1551–1567.CrossRefGoogle Scholar
  36. Lingenfelder, M. (2005). Rain forest dynamics and response to drought in a Bornean primary lowland dipterocarp forest. Ph.D. thesis, University of Bern.Google Scholar
  37. Lucas, P. W., & Corlett, R. T. (1991). Relationship between the diet of Macaca fascicularis and forest phenology. Folia Primatologica, 57(4), 201–215.CrossRefGoogle Scholar
  38. Maisels, F., Gauthier-Hion, A., & Gautier, J. P. (1994). Diets of 2 sympatric colobines in Zaire: More evidence on seed-eating in forests on poor soils. International Journal of Primatology, 15(5), 681–701.CrossRefGoogle Scholar
  39. Marshall, A. J., Boyko, C. M., Feilen, K. L., Boyko, R. H., & Leighton, M. (2009). Defining fallback foods and assessing their importance in primate ecology and evolution. American Journal of Physical Anthropology, 140(4), 603–614.CrossRefPubMedGoogle Scholar
  40. Marshall, A. J., & Wrangham, R. W. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28(6), 1218–1235.CrossRefGoogle Scholar
  41. Matsuda, I., Tuuga, A., & Higashi, S. (2009a). The feeding ecology and activity budget of proboscis monkeys. American Journal of Primatology, 71(6), 478–492.CrossRefPubMedGoogle Scholar
  42. Matsuda, I., Tuuga, A., & Higashi, S. (2009b). Ranging behavior of proboscis monkeys in a riverine forest with special reference to ranging in inland forest. International Journal of Primatology, 30(2), 313–325.CrossRefGoogle Scholar
  43. Newbery, D. M., Campbell, E. J. F., Proctor, J., & Still, M. J. (1996). Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia. Species composition and patterns in the understorey. Vegetatio, 122(2), 193–220.CrossRefGoogle Scholar
  44. Newton, P. (1992). Feeding and ranging patterns of forest hanuman langurs (Presbytis entellus). International Journal of Primatology, 13(3), 245–285.CrossRefGoogle Scholar
  45. Norhayati, A. (2001). Frugivores and fruit production in primary and logged tropical rainforests. Ph.D. thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia.Google Scholar
  46. Oates, J. F. (1988). The diet of the olive colobus monkey, Procolobus verus, in Sierra Leone. International Journal of Primatology, 9(5), 457–478.CrossRefGoogle Scholar
  47. Pond, C. M. (1978). Morphological aspects and ecological and mechanical consequences of fat deposition in wild vertebrates. Annual Review of Ecology and Systematics, 9, 519–570.CrossRefGoogle Scholar
  48. Riek, A., & Geiser, F. (2014). Heterothermy in pouched mammals: A review. Journal of Zoology, 292(2), 74–85.CrossRefGoogle Scholar
  49. Rothman, J. M., Chapman, C. A., & Pell, A. N. (2008). Fiber-bound nitrogen in gorilla diets: Implications for estimating dietary protein intake of primates. American Journal of Primatology, 70(7), 690–694.CrossRefPubMedGoogle Scholar
  50. Rothman, J. M., Van Soest, P. J., & Pell, A. N. (2006). Decaying wood is a sodium source for mountain gorillas. Biology Letters, 2(3), 321–324.CrossRefPubMedCentralPubMedGoogle Scholar
  51. Sakai, S. (2002). General flowering in lowland mixed dipterocarp forests of South-east Asia. Biological Journal of the Linnean Society, 75(2), 233–247.CrossRefGoogle Scholar
  52. Sayers, K., & Norconk, M. A. (2008). Himalayan Semnopithecus entellus at Langtang National Park, Nepal: Diet, activity patterns, and resources. International Journal of Primatology, 29(2), 509–530.CrossRefGoogle Scholar
  53. Simmen, B., Tarnaud, L., Bayart, F., Hladik, A., Thiberge, A. L., Jaspart, S., et al. (2005). Secondary metabolite contents in the forests of Mayotte and Madagascar, and their incidence on two leaf-eating lemur-species (Eulemur spp.). Revue d'Ecologie (la Terre et la Vie), 60(4), 297–324.Google Scholar
  54. Smythe, N., Glanz, W., & Leigh, E. G. J. (1982). Population regulation in some terrestrial frugivores. In E. G. J. Leigh, A. S. Rand, & D. M. Windsor (Eds.), The ecology of a tropical forest seasonal rhythms and long-term changes (pp. 227–238). Washington, DC: Smithsonian Institution Press.Google Scholar
  55. Snaith, T. V., & Chapman, C. A. (2005). Towards an ecological solution to the folivore paradox: Patch depletion as an indicator of within-group scramble competition in red colobus monkeys (Piliocolobus tephrosceles). Behavioral Ecology and Sociobiology, 59(2), 185–190.CrossRefGoogle Scholar
  56. Snaith, T. V., & Chapman, C. A. (2007). Primate group size and interpreting sociolecological models: Do folivores really play by different rules? Evolutionary Anthropology, 16(3), 94–106.CrossRefGoogle Scholar
  57. Soxhlet, F. (1879). Die gewichtsanalytische Bestimmung des Milchfettes. Polytechnisches J, 232, 461–465.Google Scholar
  58. Strier, K. B. (1991). Diet in one group of woolly spider monkeys, or muriquis (Brachyteles arachnoides). American Journal of Primatology, 23(2), 113–126.CrossRefGoogle Scholar
  59. Tombak, K. J., Reid, A. J., Chapman, C. A., Rothman, J. M., Johnson, C. A., & Reyna-Hurtado, R. (2012). Patch depletion behavior differs between sympatric folivorous primates. Primates, 53(1), 57–64.CrossRefPubMedGoogle Scholar
  60. Tsuji, Y., Hanya, G., & Grueter, C. C. (2013). Feeding strategies of primates in temperate and alpine forests: Comparison of Asian macaques and colobines. Primates, 54(3), 201–215.CrossRefPubMedGoogle Scholar
  61. Ungar, P. S. (1995). Fruit preferences of 4 sympatric primate species at Ketambe, northern Sumatra, Indonesia. International Journal of Primatology, 16(2), 221–245.CrossRefGoogle Scholar
  62. van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In V. Standen & R. A. Foley (Eds.), Comparative socioecology (pp. 195–218). Oxford: Blackwell Scientific.Google Scholar
  63. van Schaik, C. P., Terborgh, J. W., & Wright, S. J. (1993). The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24, 353–377.CrossRefGoogle Scholar
  64. van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597.CrossRefPubMedGoogle Scholar
  65. Vandercone, R. P., Dinadh, C., Wijethunga, G., Ranawana, K., & Rasmussen, D. T. (2012). Dietary diversity and food selection in hanuman langurs (Semnopithecus entellus) and purple-faced langurs (Trachypithecus vetulus) in the Kaludiyapokuna Forest Reserve in the dry zone of Sri Lanka. International Journal of Primatology, 33(6), 1382–1405.CrossRefGoogle Scholar
  66. Wong, S. T., Servheen, C., Ambu, L., & Norhayati, A. (2005). Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology, 21, 627–639.CrossRefGoogle Scholar
  67. Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262–300.CrossRefGoogle Scholar
  68. Zhou, Q. H., Huang, Z. H., Wei, X. S., Wei, F. W., & Huang, C. M. (2009). Factors influencing interannual and intersite variability in the diet of Trachypithecus francoisi. International Journal of Primatology, 30(4), 583–599.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Primate Research InstituteKyoto UniversityInuyamaJapan
  2. 2.Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations