International Journal of Primatology

, Volume 35, Issue 6, pp 1088–1104 | Cite as

African Primate Assemblages Exhibit a Latitudinal Gradient in Dispersal Limitation

  • Lydia Beaudrot
  • Jason M. Kamilar
  • Andrew J. Marshall
  • Kaye E. Reed
Article

Abstract

Recent studies have demonstrated that dispersal limitation, which refers to the limited ability of individuals to reach distant geographic areas, is an important influence on the species that are found in primate assemblages. In this study, we investigate the relative influences of dispersal limitation and environmental filtering in 131 African primate assemblages in 9 biogeographic regions throughout sub-Saharan Africa. Specifically, we evaluate the dispersal-ecological specialization hypothesis, which posits that there are trade-offs between dispersal ability and ecological specialization that are influenced by climatic variation along latitudinal gradients. The hypothesis predicts that species in assemblages near the equator, where climatic conditions are more stable, will exhibit stronger dispersal limitation and greater ecological specialization than species within assemblages located further from the equator, where climate is more variable. In contrast, assemblages located at higher latitudes are expected to be influenced more strongly by environmental filtering than dispersal limitation. We used hierarchical cluster analysis to identify regions, conducted partial Mantel tests to evaluate the contributions of dispersal limitation and environmental filtering in each region, and evaluated predictors of those contributions with linear regression. In all regions, dispersal limitation was a stronger predictor of community similarity than was environmental filtering, yet the strength of dispersal limitation varied. Dispersal limitation was greatest at low latitudes and declined with increasing absolute latitude. Thus, primate assemblages exhibited a significant latitudinal gradient in dispersal limitation, but not in environmental filtering. These results support aspects of the dispersal-ecological specialization hypothesis and call for future mechanistic studies to address this broad-scale pattern.

Keywords

Biogeography Community assembly Gene flow Macroecology Metacommunity Niche Primate communities 

Supplementary material

10764_2014_9773_MOESM1_ESM.docx (214 kb)
ESM 1Species data references (Appendix S1), locations of sites included and excluded from the study (Appendix S2), the cluster analysis dendrogram (Appendix S3), and partial Mantel test results with an alternative similarity index (βsim index; Appendix S4) are available online. (DOCX 214 kb)

References

  1. Arita, H. T., & Vazquez-Dominguez, E. (2008). The tropics: Cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecology Letters, 11, 653–663.PubMedCrossRefGoogle Scholar
  2. Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.CrossRefGoogle Scholar
  3. Baselga, A., Jimenez-Valverde, A., & Niccolini, G. (2007). A multiple-site similarity measure independent of richness. Biology Letters, 3(6), 642–645.Google Scholar
  4. Baselga, A., Lobo, J. M., Svenning, J. C., Aragon, P., & Araujo, M. B. (2012). Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Global Ecology and Biogeography, 21, 1106–1113.CrossRefGoogle Scholar
  5. Beaudrot, L., & Marshall, A. J. (2011). Primate communities are structured more by dispersal limitation than by niches. Journal of Animal Ecology, 80, 332–341.PubMedCrossRefGoogle Scholar
  6. Beaudrot, L., Rejmánek, M., & Marshall, A. J. (2013). Dispersal modes affect tropical forest assembly across trophic levels. Ecography, 36, 984–993.CrossRefGoogle Scholar
  7. Bowman, J., Jaeger, J. A. G., & Fahrig, L. (2002). Dispersal distance of mammals is proportional to home range size. Ecology, 83, 2049–2055.CrossRefGoogle Scholar
  8. Carnicer, J., Stefanescu, C., Vila, R., Dinca, V., Font, X., & Penuelas, J. (2013). A unified framework for diversity gradients: The adaptive trait continuum. Global Ecology and Biogeography, 22, 6–18.CrossRefGoogle Scholar
  9. Carstensen, D. W., Lessard, J. P., Holt, B. G., Borregaard, M. K., & Rahbek, C. (2013). Introducing the biogeographic species pool. Ecography, 36, 1–9.CrossRefGoogle Scholar
  10. Case, T. J., & Taper, M. L. (2000). Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders. American Naturalist, 155, 583–605.PubMedCrossRefGoogle Scholar
  11. Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693–715.PubMedCrossRefGoogle Scholar
  12. Chase, J. M., Amarasekare, P., Cottenie, K., Gonzalez, A., Holt, R. D., Holyoak, M., et al. (2005). Competing theories for competitive metacommunities. In M. Holyoak, M. A. Leibold, & R. D. Holt (Eds.), Metacommunities: Spatial dynamics and ecological communities (pp. 334–354). Chicago: University of Chicago Press.Google Scholar
  13. Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351–2363.CrossRefGoogle Scholar
  14. Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8, 1175–1182.PubMedCrossRefGoogle Scholar
  15. Cowlishaw, G., & Hacker, J. E. (1997). Distribution, diversity and latitude in African primates. The American Naturalist, 150, 505–512.PubMedCrossRefGoogle Scholar
  16. Dapporto, L., Ramazzotti, M., Fattorini, S., Talavera, G., Vila, R., & Dennis, R. L. H. (2013a). recluster: An unbiased clustering procedure for beta-diversity turnover. Ecography. doi:10.1111/j.1600-0587.2013.00444.x.
  17. Dapporto, L., Ramazzotti, M., Fattorini, S., Vila, R., Talavera, G., & Dennis, R. L. H. (2013b). recluster: Ordination methods for the analysis of beta-diversity indices. R package version 2.5.Google Scholar
  18. Eeley, H. A. C., & Foley, R. A. (1999). Species richness, species range size and ecological specialisation among African primates: Geographical patterns and conservation implications. Biodiversity and Conservation, 8, 1033–1056.CrossRefGoogle Scholar
  19. Eeley, H. A. C., & Lawes, M. J. (1999). Large-scale patterns of species richness and species range size in anthropoid primates. In J. G. Fleagle, C. Janson, & K. Reed (Eds.), Primate communities (pp. 191–219). New York: Cambridge University Press.CrossRefGoogle Scholar
  20. Fielding, A. H. (2007). Cluster and classification techniques for the biosciences. New York: Cambridge University Press.Google Scholar
  21. Fleagle, J. G., Janson, C. H., & Reed, K. E. (Eds.). (1999). Primate communities. New York: Cambridge University Press.Google Scholar
  22. Gandon, S., & Michalakis, Y. (2001). Multiple causes of the evolution of dispersal. Oxford: Oxford University Press.Google Scholar
  23. Gavilanez, M. M., & Stevens, R. D. (2013). Role of environmental, historical and spatial processes in the structure of Neotropical primate communities: Contrasting taxonomic and phlogenetic perspectives. Global Ecology and Biogeography, 22, 607–619.CrossRefGoogle Scholar
  24. Gompper, M. E., & Gittleman, J. L. (1991). Home range scaling: Intraspecific and comparative trends. Oecologia, 87, 343–348.CrossRefGoogle Scholar
  25. Grubb, P. (1982). Refuges and dispersal in the speciation of African forest mammals. In G. T. Prance (Ed.), Biological diversification in the tropics (pp. 537–553). New York: Columbia University Press.Google Scholar
  26. Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4, 336–344.CrossRefGoogle Scholar
  27. Harcourt, A. H. (1998). Ecological indicators of risk for Primates, as judged by species’ susceptibility to logging. In T. Caro (Ed.), Behavioral ecology and conservation (pp. 56–79). New York: Oxford University Press.Google Scholar
  28. Harcourt, A. H. (2000). Latitude and latitudinal extent: A global analysis of the Rapoport effect in a tropical mammalian taxon: primates. Journal of Biogeography, 27, 1169–1182.CrossRefGoogle Scholar
  29. Harcourt, A. H. (2012). Human biogeography. Berkeley: University of California Press.CrossRefGoogle Scholar
  30. Harcourt, A. H., & Wood, M. A. (2012). Rivers as barriers to primate distributions in Africa. International Journal of Primatology, 33, 168–183.CrossRefGoogle Scholar
  31. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  32. Holt, B. G., Lessard, J. P., Borregaard, M. K., Fritz, S. A., Araujo, M. B., Dimitrov, D., et al. (2013). An update of Wallace’s zoogeographic regions of the world. Science, 339, 74–78.Google Scholar
  33. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
  34. Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–172.CrossRefGoogle Scholar
  35. Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233–249.CrossRefGoogle Scholar
  36. Jocque, M., Field, R., Brendonck, L., & De Meester, L. (2010). Climatic control of dispersal-ecological specialization trade-offs: A metacommunity process at the heart of the latitudinal diversity gradient? Global Ecology and Biogeography, 19, 244–252.CrossRefGoogle Scholar
  37. Kamilar, J. M. (2009). Environmental and geographic correlates of the taxonomic structure of primate communities. American Journal of Physical Anthropology, 139, 382–393.PubMedCrossRefGoogle Scholar
  38. Kamilar, J. M., & Beaudrot, L. (2013). Understanding primate communities: Recent developments and future directions. Evolutionary Anthropology, 22, 174–185.PubMedCrossRefGoogle Scholar
  39. Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behavior, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20123041.CrossRefGoogle Scholar
  40. Kamilar, J. M., & Guidi, L. M. (2010). The phylogenetic structure of primate communities: variation within and across continents. Journal of Biogeography, 37(5), 801–813.Google Scholar
  41. Kamilar, J. M., Martin, S. K., & Tosi, A. J. (2009). Combining biogeographic and phylogenetic data to examine primate speciation: An example using Cercopithecin monkeys. Biotropica, 41, 514–519.CrossRefGoogle Scholar
  42. Kamilar, J. M., & Muldoon, K. M. (2010). The climatic niche diversity of Malagasy primates: A phylogenetic perspective. Plos One, 5, e11073.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kreft, H., & Jetz, W. (2010). A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 37, 2029–2053.CrossRefGoogle Scholar
  44. Laurance, W. F. (1990). Comparative responses of five arboreal marsupials to tropical forest fragmentation. Journal of Mammalogy, 71, 641–653.CrossRefGoogle Scholar
  45. Leithead, M., Anand, M., Duarte, L. D., & Pillar, V. D. (2012). Causal effects of latitude, disturbance and dispersal limitation on richness in a recovering temperate, subtropical and tropical forest. Journal of Vegetation Science, 23, 339–351.CrossRefGoogle Scholar
  46. Linder, H. P., de Klerk, H. M., Born, J., Burgess, N. D., Fjeldsa, J., & Rahbek, C. (2012). The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. Journal of Biogeography, 39, 1189–1205.CrossRefGoogle Scholar
  47. Lindstedt, S. L., Miller, B. J., & Buskirk, S. W. (1986). Home range, time, and body size in mammals. Ecology, 67, 413–418.CrossRefGoogle Scholar
  48. Magurran, A. E. (1988). Ecological diversity and its measurements. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  49. Munguia, M., Peterson, A. T., & Sanchez-Cordero, V. (2008). Dispersal limitation and geographical distributions of mammal species. Journal of Biogeography, 35, 1879–1887.CrossRefGoogle Scholar
  50. Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2013). vegan: Community Ecology Package. R. p. v. 2.0-7. Available at http://CRAN.R-project.org/package=vegan
  51. R Development Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  52. Rapoport, E. H. (1982). Areography: Geographical strategies of species. New York: Pergamon Press.Google Scholar
  53. Reed, K. E., & Bidner, L. R. (2004). Primate communities: Past, present and possible future. Yearbook of Physical Anthropology, 47, 2–39.CrossRefGoogle Scholar
  54. Reed, K. E., & Fleagle, J. G. (1995). Geographic and climatic control of primate diversity. Proceedings of the National Academy of Sciences of the USA, 92, 7874–7876.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Rovero, F., Marshall, A. R., Jones, T., & Perkin, A. (2009). The primates of the Udzungwa Mountains: Diversity, ecology and conservation. Journal of Anthropological Science, 87, 93–126.Google Scholar
  56. Salisbury, C. L., Seddon, N., Cooney, C. R., & Tobias, J. A. (2012). The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecology Letters, 15, 847–855.PubMedCrossRefGoogle Scholar
  57. Schwarzkopf, L., & Rylands, A. (1989). Primate species richness in relation to habitat structure in Amazonian rainforest fragments. Biological Conservation, 48, 1–12.CrossRefGoogle Scholar
  58. Seber, G. A. F. (1984). Multivariate observations. New York: John Wiley & Sons.CrossRefGoogle Scholar
  59. Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35, 627–632.CrossRefGoogle Scholar
  60. Soininen, J., McDonald, R., & Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography, 30, 3–12.CrossRefGoogle Scholar
  61. Steinbauer, M. J., Dolos, K., Reineking, B., & Beierkuhnlein, C. (2012). Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology and Biogeography, 21, 1203–1212. doi:10.1111/j.1466-8238.2012.00772.x.
  62. Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. American Naturalist, 133, 240–256.CrossRefGoogle Scholar
  63. Tosi, A. J., Detwiler, K. M., & Disotell, T. R. (2005). X-chromosomal window into the evolutionary history of the guenons (Primates : Cercopithecini). Molecular Phylogenetics and Evolution, 36, 58–66.PubMedCrossRefGoogle Scholar
  64. Tuomisto, H., Ruokolainen, L., & Ruokolainen, K. (2012). Modelling niche and neutral dynamics: On the ecological interpretation of variation partitioning results. Ecography, 35, 961–971.CrossRefGoogle Scholar
  65. Vavrek, M. J. (2011). Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14:1T. http://palaeo-electronica.org/2011_1/238/index.html. Accessed 1 Oct 2013.
  66. Weir, J. T., & Schluter, D. (2007). The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science, 315, 1574–1576.PubMedCrossRefGoogle Scholar
  67. Whitmee, S., & Orme, C. D. L. (2013). Predicting dispersal distance in mammals: a traitbased approach. Journal of Animal Ecology, 82(1), 211–221.Google Scholar
  68. Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639–644.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lydia Beaudrot
    • 1
  • Jason M. Kamilar
    • 2
    • 3
  • Andrew J. Marshall
    • 4
  • Kaye E. Reed
    • 5
  1. 1.Graduate Group in Ecology and Department of AnthropologyUniversity of CaliforniaDavisUSA
  2. 2.Department of Anatomy, Arizona College of Osteopathic MedicineMidwestern UniversityGlendaleUSA
  3. 3.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  4. 4.Graduate Group in Ecology, Department of Anthropology, and Animal Behavior Graduate GroupUniversity of CaliforniaDavisUSA
  5. 5.School of Human Evolution and Social Change and Institute of Human OriginsArizona State UniversityTempeUSA

Personalised recommendations