International Journal of Primatology

, Volume 35, Issue 1, pp 305–324 | Cite as

AVPR1A Variation in Chimpanzees (Pan troglodytes): Population Differences and Association with Behavioral Style

  • Stephanie F. Anestis
  • Timothy H. Webster
  • Jason M. Kamilar
  • M. Babette Fontenot
  • David P. Watts
  • Brenda J. BradleyEmail author


Primates and other mammals show measurable, heritable variation in behavioral traits such as gregariousness, timidity, and aggression. Connections among behavior, environment, neuroanatomy, and genetics are complex, but small genetic differences can have large effects on behavioral phenotypes. One of the best examples of a single gene with large effects on natural variation in social behavior is AVPR1A, which codes for a receptor of the peptide hormone arginine vasopressin. Work on rodents shows a likely causal association between AVPR1A regulatory polymorphisms and social behavior. Chimpanzees also show variation in the AVPR1A regulatory region, with some individuals lacking a ca. 350-bp segment corresponding to a putative functional element. Thus, chimpanzees have a “short” allele (segment deletion) and a “long” allele (no deletion) at this locus. Here we compare AVPR1A variation in two chimpanzee populations, and we examine behavioral and hormonal data in relation to AVPR1A genotypes. We genotyped AVPR1A in a captive population of western chimpanzees (Pan troglodytes verus, New Iberia Research Center; N = 64) for which we had quantitative measures of personality (based on 15 behavioral style indices, calculated from 3 yr of observational data), dominance rank, and baseline testosterone levels. We also provide the first assessment of AVPR1A genotype frequencies in a wild eastern chimpanzee population (Pan troglodytes schweinfurthii, Ngogo community, Kibale National Park, Uganda; N = 26). Our results indicated that the AVPR1A long allele was associated with a “smart” social personality in captive western chimpanzees, independent of testosterone levels. Although the frequency of the long allele was relatively low in captive western chimpanzees (0.23), it was the major allele in wild eastern chimpanzees (0.62). Our finding that allele and genotype frequencies for the AVPR1A polymorphism differ among chimpanzee populations also highlights the need for comparative studies —across subspecies and research sites— in primate behavioral genetics.


Apes Behavioral genetics Gene expression Hormones Personality Vasopressin 



We thank Lauren Brent and Amanda Melin for inviting us to contribute to this issue. We also thank Lauren Brent and two anonymous reviewers for helpful comments. We are especially grateful to Gary Aronsen for laboratory support and helpful discussions, and we thank Rick Bribiescas and the YIBS Program in Reproductive Ecology for helpful input and support. We thank Charlotte Payne, Gary Aronsen, Adolph Magoba, Godfrey Mbabazi, Lawrence Ndangizi, and Alfred Tumasiime for help with sample collection and logistics at Ngogo, and we thank Shayna Liberman for assistance in the lab. This research was supported by Yale University, including a Yale Postdoctoral Fellowship in the Biological Sciences, the L. S. B. Leakey Foundation, and the National Science Foundation grant no. BSE0120175.

Supplementary material

10764_2013_9747_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 31 kb)


  1. Anestis, S. F. (2005). Behavioral style, dominance rank, and urinary cortisol in young chimpanzees (Pan troglodytes). Behaviour, 142, 1245–1268.CrossRefGoogle Scholar
  2. Anestis, S. F. (2006). Testosterone in juvenile and adolescent male chimpanzees (Pan troglodytes): Effects of dominance rank, aggression, and behavioral style. American Journal of Physical Anthropology, 130, 536–545.PubMedCrossRefGoogle Scholar
  3. Babb, P. L., Fernandez-Duque, E., & Schurr, T. G. (2010). AVPR1A sequence variation in monogamous owl monkeys (Aotus azarai) and its implications for the evolution of Platyrrhine social behavior. Journal of Molecular Evolution, 71, 279–297.PubMedCrossRefGoogle Scholar
  4. Bielsky, I. F., Hu, S. B., & Young, L. J. (2005). Sexual dimorphism in the vasopressin system: Lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behavioural Brain Research, 164, 132–136.PubMedCrossRefGoogle Scholar
  5. Bowden, R., MacFie, T. S., Myers, S., Hellenthal, G., Nerrienet, E., Bontrop, R.E., Freeman, C., Donnelly, P., & Mundy, N.I. (2012). Genomic tools for evolution and conservation in the chimpanzee: Pan troglodytes ellioti is a genetically distinct population. PLoS Genetics, 8, e1002504.Google Scholar
  6. Bradley, B. J., & Lawler, R. R. (2011). Linking genotypes, phenotypes and fitness in wild primate populations. Evolutionary Anthropology, 20, 104–119.PubMedCrossRefGoogle Scholar
  7. Brent, L. J. N., Heilbronner, S. R., Horvath, J. E., Gonzalez-Martinez, J., Ruiz-Lambides, A. V., Robinson, A., Skene, J. H. P., & Platt, M. L. (2013). Genetic origins of social networks in rhesus macaques. Nature Scientific Reports, 3, 1042.Google Scholar
  8. Burnham, K. P., & Anderson, D. (2002). Model selection and multimodel inference. New York: Springer Science + Business Media.Google Scholar
  9. Caldwell, H. K., Lee, H., Macbeth, A. H., & Young, W. S. (2008). Vasopressin: Behavioral roles of an “original” neuropeptide. Progress in Neurobiology, 84, 1–24.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Carter, A. J., Heinsohn, R., Goldizen, A. W., & Biro, P. A. (2013). Boldness, trappability and sampling bias in wild lizards. Animal Behaviour, 83, 1051–1058.Google Scholar
  11. Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C., & Gaspar, P. (1996). Lack of barrels in the somatosensory cortex of MAOA-deficient mice: Role of a serotonin excess during the critical period. Neuron, 16, 297.PubMedCrossRefGoogle Scholar
  12. Donaldson, Z. R., Kondrashov, F. A., Putnam, A., Bai, Y., Stoinski, T. L., Hammock, E. A. D., & Young, L. J. (2008). Evolution of a behavior-linked microsatellite-containing element in the 5′ flanking region of the primate AVPR1A gene. BMC Evolutionary Biology, 8, 180.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Ebstein, R. P., Israel, S., Lerer, E., Uzefovsky, F., Shalev, I., Gritsenko, I., Riebold, M., Salomon, S., & Yirmiya, N. (2009). Arginine vasopressin and oxytocin modulate human social behavior. Annals of the New York Academy of Sciences, 1167, 87–102.Google Scholar
  14. Ebstein, R. P., Knafo, A., Mankuta, D., Chew, S. H., & Lai, P. S. (2012). The contributions of oxytocin and vasopressin pathway genes to human behavior. Hormones and Behavior, 61, 359–379.PubMedCrossRefGoogle Scholar
  15. Ely, J. J., Dye, B., Frels, W. I., Fritz, J., Gagneux, P., Khun, H. H., Switzer, W. M., & Lee, D. R. (2005). Subspecies composition and founder contribution of the captive U.S. chimpanzee (Pan troglodytes) population. American Journal of Primatology, 67, 223–241.PubMedCrossRefGoogle Scholar
  16. Eysenck, H. J. (1947). Dimensions of personality. New Brunswick, NJ: Transaction Publishers.Google Scholar
  17. Fairbanks, L. A., Newman, T. K., Bailey, J. N., Jorgensen, M. J., Breidenthal, S. E., Ophoff, R. A., Comuzzie, A. G., Martin, L. J., & Rogers, J. (2004). Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biological Psychiatry, 55, 642–647.PubMedCrossRefGoogle Scholar
  18. Fink, S., Excoffier, L., & Heckel, G. (2006). Mammalian monogamy is not controlled by a single gene. Proceedings of the National Academy of Sciences of the USA, 103, 10956–10960.PubMedCrossRefGoogle Scholar
  19. Fitzpatrick, M. J., Ben-Shahar, Y., Smid, H. M., Vet, L. E. M., Robinson, G. E., & Sokolowski, M. B. (2005). Candidate genes for behavioral ecology. Trends in Ecology and Evolution, 20, 96–104.PubMedCrossRefGoogle Scholar
  20. Flint, J., Greenspan, R. J., & Kendler, K. S. (2010). How genes influence behavior. Oxford: Oxford University Press.Google Scholar
  21. Garamszegi, L. Z. (2011). Information-theoretic approaches to statistical analysis in behavioural ecology: An introduction. Behavioral Ecology and Sociobiology, 65, 1–11.CrossRefGoogle Scholar
  22. Godwin, J., & Thompson, R. (2012). Nonapeptides and social behavior in fishes. Hormones and Behavior, 61, 230–238.PubMedCrossRefGoogle Scholar
  23. Hammock, E. A. D., & Young, L. J. (2002). Variation in the vasopressin V1a receptor promoter and expression: Implications for the inter- and intraspecific variation in social behavior. European Journal of Neuroscience, 16, 399–402.PubMedCrossRefGoogle Scholar
  24. Hammock, E. A. D., & Young, L. J. (2005). Microsatellite instability generates diversity in brain and sociobehavioral traits. Science, 308, 1630–1634.PubMedCrossRefGoogle Scholar
  25. Hammock, E. A. D., & Young, L. J. (2006). Oxytocin, vasopressin and pair bonding: Implications for autism. Philosophical Transactions of the Royal Society, B: Biological Sciences, 361, 2187–2198.CrossRefGoogle Scholar
  26. Heinrichs, M., von Dawans, B., & Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Frontiers in Neuroendocrinology, 30, 548.PubMedCrossRefGoogle Scholar
  27. Hohmann, G. H., & Boesch, C. (2002). Behavioral diversity in chimpanzees and bonobos. Cambridge, UK: Cambridge University Press.Google Scholar
  28. Hong, K. W., Matsukawa, R., Hirata, Y., Hayasaka, I., Murayama, Y., Ito, S., & Inoue-Murayama, M. (2009). Allele distribution and effect on reporter gene expression of vasopressin receptor gene (AVPR1a)-linked VTNR in primates. Journal of Neural Transmission, 116, 535–538.PubMedCrossRefGoogle Scholar
  29. Hopkins, W. D., Donaldson, Z. R., & Young, L. J. (2012). A polymorphic indel containing the RS3 microsatellite in the 5′ flanking region of the vasopressin V1a receptor gene is associated with chimpanzee (Pan troglodytes) personality. Genes, Brain and Behavior, 11, 552–558.CrossRefGoogle Scholar
  30. Insel, T. R., Wang, Z., & Ferris, C. F. (1994). Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. Journal of Neuroscience, 14, 5381–5392.PubMedGoogle Scholar
  31. Kamilar, J. M., Heesy, C. P., & Bradley, B. J. (2013). Did trichromatic color vision and red hair color co-evolve in primates? American Journal of Primatology. doi: 10.1002/ajp.22099.PubMedGoogle Scholar
  32. Knafo, A., Israel, S., Darvasi, A., Bachner-Melman, R., Uzefovsky, F., Cohen, L., Lerer, E., Laiba, E., Raz, Y., Nemanov, L., Gritsenko, I., Dina, C., Agam, G., Dean, B., Bornstein, G., & Ebstein, R. P. (2008). Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes, Brain and Behavior, 7, 266–275.CrossRefGoogle Scholar
  33. Langergraber, K., Mitani, J. C., & Vigilant, L. (2009). Kinship and social bonds in female chimpanzees (Pan troglodytes). American Journal of Primatology, 71, 840–851.PubMedCrossRefGoogle Scholar
  34. Langergraber, K. E., Boesch, C., Inoue, E., Inoue-Murayama, M., Mitani, J. C., Nishida, T., Pusey, A., Reynolds, V., Schubert, G., Wrangham R.W., Wroblewski, E., & Vigilant, L. (2011). Genetic and ‘cultural’ similarity in wild chimpanzees. Proceedings of the Royal Society B: Biological Sciences, 278(1704), 408–416.Google Scholar
  35. Langergraber, K. E., Mitani, J. C., & Vigilant, L. (2007). The limited impact of kinship on cooperation in wild chimpanzees. Proceedings of the National Academy of Sciences of the USA, 104, 7786–7790.PubMedCrossRefGoogle Scholar
  36. Lehmann, J., & Boesch, C. (2008). Sexual differences in chimpanzee sociality. International Journal of Primatology, 29, 65–81.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Müller, C. R., Hamer, D. H., & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.PubMedCrossRefGoogle Scholar
  38. Lim, M. M., Wang, Z., Olazabal, D. E., Ren, X., Terwilliger, E. F., & Young, L. J. (2004). Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature, 429, 754–757.PubMedCrossRefGoogle Scholar
  39. McIntosh, A. M., Bennett, C., Dickson, D., Anestis, S. F., Watts, D. P., Webster, T.H., Fontenot, M.B., & Bradley, B.J. (2012). The Apolipoprotein E (APOE) gene appears functionally monomorphic in chimpanzees (Pan troglodytes). PLoS ONE, 7(10), e47760.Google Scholar
  40. Meirmans, P. G., & Van Tienderen, P. H. (2004). GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4(4), 792–794.CrossRefGoogle Scholar
  41. Meyer-Lindenber, A., Kolachana, B., Gold, B., Olsh, A., Nicodemus, K. K., Mattay, V., Dean, M., & Weinberger, D. R. (2009). Genetic variants in AVPR1a linked to autism predict amygdala activation and personality traits in healthy humans. Molecular Psychiatry, 14, 968–975.CrossRefGoogle Scholar
  42. Mitani, J. C. (2009). Male chimpanzees form enduring and equitable social bonds. Animal Behaviour, 77, 633–640.CrossRefGoogle Scholar
  43. Mitani, J. C., Merriwether, D. A., & Zhang, C. (2000). Male affiliation, cooperation and kinship in wild chimpanzees. Animal Behaviour, 59, 885–893.PubMedCrossRefGoogle Scholar
  44. Mitani, J. C., Watts, D. P., Pepper, J. W., & Merriwether, D. A. (2002). Demographic and social constraints on male chimpanzee behavior. Animal Behaviour, 64, 727–737.CrossRefGoogle Scholar
  45. Morin, P. A., Chambers, K. E., Boesch, C., & Vigilant, L. (2001). Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Molecular Ecology, 10, 1835–1844.PubMedCrossRefGoogle Scholar
  46. Muller, M. N., & Mitani, J. C. (2005). Conflict and cooperation in wild chimpanzees. Advances in the Study of Behavior, 35, 275–331.CrossRefGoogle Scholar
  47. Newman, T. K., Syagailo, Y. V., Barr, C. S., Wendland, J. R., Champoux, M., Graessle, M., Suomi, S. J., Higley, J. D., & Lesch, K. P. (2005). MAOA gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biological Psychology, 57(2), 167–172.CrossRefGoogle Scholar
  48. Nishida, T. (1979). The social structure of chimpanzees of the Mahale mountains. In D. A. Hamburg & E. R. McCown (Eds.), The great apes (pp. 73–122). Menlo Park, CA: Benjamin/Cummings.Google Scholar
  49. Nsubuga, A. M., Robbins, M. M., Roeder, A. D., Morin, A., Boesch, C., & Vigilant, L. (2004). Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology, 13, 2089–2094.PubMedCrossRefGoogle Scholar
  50. Ophir, A. G., Campbell, P., Hanna, K., & Phelps, S. M. (2008). Field tests of cis-regulatory variation at the prairie vole avpr1a locus: Association with V1aR abundance but not sexual or social fidelity. Hormones and Behavior, 54, 694–702.PubMedCrossRefGoogle Scholar
  51. Potts, K. B., Watts, D. P., & Wrangham, R. W. (2011). Comparative feeding ecology of two communities of chimpanzees (Pan troglodytes) in Kibale National Park, Uganda. International Journal of Primatology, 32, 669–690.CrossRefGoogle Scholar
  52. Prichard, Z. M., Mackinnon, A. J., Jorm, A. F., & Easteal, S. (2007). AVPR1A and OXTR polymorphisms are associated with sexual and reproductive behavioral phenotypes in humans. Human Mutation, 28, 1150–1150.PubMedCrossRefGoogle Scholar
  53. Quinn, G., & Keough, M. (2002). Experimental design and data analysis for biologists. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  54. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at:
  55. Roeder, A. D., Archer, F. I., Poinar, H. N., & Morin, P. A. (2004). A novel method for collection and preservation of feces for genetic studies. Molecular Ecology Notes, 4, 761–764.CrossRefGoogle Scholar
  56. Rogers, G., Joyce, P., Mulder, R., Sellman, D., Miller, A., Allington, M., Olds, R., Wells, E., & Kennedy, M. (2004). Association of a duplicated repeat polymorphism in the 5′-untranslated region of the DRD4 gene with novelty seeking. American Journal of Medical Genetics B: Neuropsychiatric Genetics, 126B, 95–98.PubMedCrossRefGoogle Scholar
  57. Rosso, L., Keller, L., Kaessmann, H., & Hammond, R. L. (2008). Mating system and avpr1a promoter variation in primates. Biology Letters, 4, 375–378.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Sapolsky, R. M., & Ray, R. C. (1989). Styles of dominance and their endocrine correlates among wild olive baboons (Papio Anubis). American Journal Primatology, 18, 1–13.CrossRefGoogle Scholar
  59. Solomon, N. G., Richmond, A. R., Harding, P. A., Fries, A., Jaquemin, S., Schaffer, R. L., Lucia, K. E., & Keane, B. (2009). Polymorphism at the avpr1a locus in male prairie voles correlated with genetic but not social monogamy in field populations. Molecular Ecology, 18, 4680–4695.PubMedCrossRefGoogle Scholar
  60. Suomi, S. J. (2006). Risk, resilience, and gene × environment interactions in rhesus monkeys. Annals of the New York Academy of Sciences, 1094, 52–62.PubMedCrossRefGoogle Scholar
  61. Tecot, S. R., Baden, A. L., Romine, N., & Kamilar, J. M. (2012). Infant parking and nesting, not allomaternal care, influence Malagasy primate life histories. Behavioral Ecology and Sociobiology, 66, 1375–1386.CrossRefGoogle Scholar
  62. Thibonnier, M., Graves, M. K., Wagner, M. S., Auzan, C., Clauser, E., & Willard, H. F. (1996). Structure, sequence, expression, and chromosomal localization of the human V1a vasopressin receptor gene. Genomics, 31, 327–334.PubMedCrossRefGoogle Scholar
  63. Thibonnier, M., Graves, M. K., Wagner, M. S., Chatelain, N., Soubrier, F., Corvol, P., Willard, H. F., & Jeunemaitre, X. (2000). Study of V1–vascular vasopressin receptor gene microsatellite polymorphisms in human essential hypertension. Journal of Molecular and Cellular Cardiology, 32, 557–564.PubMedCrossRefGoogle Scholar
  64. Ukkola, L. T., Onkamo, R., Raijas, R., Karma, K., & Järvelä, I. (2009). Musical aptitude is associated with AVPR1A-haplotypes. PLOS One, 4, e5534.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Wakefield, M. L. (2008). Grouping patterns and competition among female Pan troglodytes schweinfurthii at Ngogo, Kibale National Park, Uganda. International Journal of Primatology, 29, 907–929.CrossRefGoogle Scholar
  66. Wakefield, M. L. (2013). Social dynamics among females and their influence on social structure in an East African chimpanzee community. Animal Behaviour. doi: 10.1016/j.bbr.2011.03.031.Google Scholar
  67. Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., Ganiban, J. M., Spotts, E. L., Pedersen, N. L., Eriksson, E., & Lichtenstein, P. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of the National Academy of Sciences of the USA, 105, 14153–14156.PubMedCrossRefGoogle Scholar
  68. Watts, D. P. (2000a). Grooming between male chimpanzees at Ngogo, Kibale National Park. I. Partner number and diversity and grooming reciprocity. International Journal of Primatology, 21, 189–210.CrossRefGoogle Scholar
  69. Watts, D. P. (2000b). Grooming between male chimpanzees at Ngogo, Kibale National Park. II. Influence of male rank and possible competition for partners. International Journal of Primatology, 21, 211–238.CrossRefGoogle Scholar
  70. Watts, D. P. (2002). Reciprocity and interchange in the social relationships of wild chimpanzees. Behaviour, 139, 343–370.CrossRefGoogle Scholar
  71. Watts, D. P. (2012). Long-term research on chimpanzee behavioral ecology in Kibale National Park, Uganda. In P. M. Kappler & D. P. Watt (Eds.), Long-term field studies of primates (pp. 313–338). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  72. Watts, D. P., Potts, K. B., Lwanga, J. S., & Mitani, J. C. (2012). Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 2. Temporal variation and fallback foods. American Journal of Primatology, 74, 130–144.PubMedCrossRefGoogle Scholar
  73. Weir, B. S., & Clark Cockerham, C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.CrossRefGoogle Scholar
  74. Weiss, A., King, J. E., & Hopkins, W. D. (2007). A cross-setting study of chimpanzee (Pan troglodytes) personality structure and development: Zoological parks and Yerkes National Primate Research Center. American Journal of Primatology, 69, 1264–1277.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Wendland, J. R., Lesch, K. P., Newman, T. K., Timme, A., Gachot-Neveu, H., Thierry, B., & Suomi, S. J. (2006). Differential functional variability of serotonin transporter and monoamine oxidase a genes in macaque species displaying contrasting levels of aggression-related behavior. Behavioral Genetics, 36, 163–172.CrossRefGoogle Scholar
  76. Wheeler, B. C., Bradley, B. J., & Kamilar, J. M. (2011). Predictors of orbital convergence in primates: A test of the snake detection hypothesis of primate evolution. Journal of Human Evolution, 61, 233–242.PubMedCrossRefGoogle Scholar
  77. Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548.PubMedCrossRefGoogle Scholar
  78. Wittig, R. M., & Boesch, C. (2003). Food competition and linear dominance hierarchy among female chimpanzees of the Tai National Park. International Journal of Primatology, 24, 847–867.CrossRefGoogle Scholar
  79. Yirmiya, N., Rosenberg, C., Levi, S., Salomon, S., Schulman, C., Nemanov, L., Dina, C., & Ebstein, R. P. (2006). Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: Mediation by socialization skills. Molecular Psychiatry, 11, 488–494.PubMedCrossRefGoogle Scholar
  80. Young, L. J., & Hammock, A. D. (2007). On switches and knobs, microsatellites and monogamy. Trends in Ecology and Evolution, 23, 209–212.Google Scholar
  81. Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R., & Insel, T. R. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400, 766–768.PubMedCrossRefGoogle Scholar
  82. Young, L. J., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7, 1048–1054.PubMedCrossRefGoogle Scholar
  83. Young, L. J., Winslow, J. T., Nilsen, R., & Insel, T. R. (1997). Species differences in V1a receptor gene expression in monogamous and nonmonogamous voles: Behavioral consequences. Behavioral Neuroscience, 111, 599–605.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stephanie F. Anestis
    • 1
  • Timothy H. Webster
    • 1
  • Jason M. Kamilar
    • 1
    • 2
    • 3
  • M. Babette Fontenot
    • 4
  • David P. Watts
    • 1
  • Brenda J. Bradley
    • 1
    Email author
  1. 1.Department of AnthropologyYale UniversityNew HavenUSA
  2. 2.Department of Anatomy, Arizona College of Osteopathic MedicineMidwestern UniversityGlendaleUSA
  3. 3.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  4. 4.Behavioral Sciences Division, New Iberia Research CenterUniversity of LouisianaLafayetteUSA

Personalised recommendations