International Journal of Primatology

, Volume 35, Issue 3–4, pp 746–763 | Cite as

Reproductive Competition Among Males in Multimale Groups of Primates: Modeling the Costs and Effectiveness of Conflict

Article

Abstract

Multimale groups of primates are characterized by strong reproductive competition among males, generally resulting in an uneven division of male reproductive success (reproductive skew). The observed patterns of conflict and reproductive skew have often been attributed to the so-called tug-of-war model. We show, however, that two important assumptions of this model are not met in male primates. First, the tug-of-war model assumes that reproductive conflict reduces overall group productivity, but in male primates (and most other vertebrates) conflict likely involves mortality rather than fecundity costs. Second, the tug-of-war model does not account for the possibility that male primates can achieve some reproductive success without engagement in open conflict, such as when a single male cannot guard several receptive females at the same time. We therefore develop a dynamic version of the tug-of-war model, in which reproductive competition causes mortality costs, and in which individuals can gain uncontested shares of reproduction dependent on the degree of female receptive overlap. This model differs substantially from the original tug-of-war model, and derives a new and rich set of comparative predictions. For instance, it predicts that the level of conflict among males declines as the queuing success of subordinate males increases (as survival increases), and also, as their uncontested share of reproduction increases, e.g., as female receptive overlap increases. Our model shows how male–male conflict and female receptive overlap collectively determine the level of reproductive skew among male primates, and illustrates that this relationship is more complex than previously thought.

Keywords

Queuing Priority of access Reproductive skew Social conflict Tug-of-war 

Notes

Acknowledgments

We thank Alexander Georgiev and Melissa Emery Thompson for inviting us to contribute to this special issue of International Journal of Primatology. We thank Rufus Johnstone, A. Georgiev, M. E. Thompson, Joanna Setchell, and three anonymous reviewers for valuable comments on this manuscript. M. Port was supported by a grant from the VolkswagenStiftung.

References

  1. Alberts, S. C., Watts, H. E., & Altmann, J. (2003). Queuing and queue-jumping: long-term pattern of reproductive skew in male savannah baboons, Papio cynocephalus. Animal Behaviour, 65, 821–840.CrossRefGoogle Scholar
  2. Altmann, S. A. (1962). A field study of sociobiology of rhesus monkeys, Macaca Mulatta. Annals of the New York Academy of Sciences, 102, 338–435.PubMedCrossRefGoogle Scholar
  3. Boesch, C., Kohou, G., Néné, H., & Vigilant, L. (2006). Male competition and paternity in wild chimpanzees of Tai forest. American Journal of Physical Anthropology, 130, 103–115.PubMedCrossRefGoogle Scholar
  4. Bradley, B. J., Robbins, M. M., Williamson, E. A., Steklis, H. D., Steklis, N. G., Eckhardt, N., Boesch, C., & Vigilant, L. (2005). Mountain gorilla tug-of-war: Silverbacks have limited control over reproduction in multimale groups. Proceedings of the National Academy of Sciences of the USA, 102, 9418–9423.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cant, M. A. (2012a). Cooperative breeding systems. In N. J. Royle, P. T. Smiseth, & M. Kölliker (Eds.), The evolution of parental care (pp. 206–225). Oxford: Oxford University Press.CrossRefGoogle Scholar
  6. Cant, M. A. (2012b). Suppression of social conflict and evolutionary transitions to cooperation. The American Naturalist, 179, 293–301.PubMedCrossRefGoogle Scholar
  7. Cant, M. A., Hodge, S. J., Bell, M. B. V., Gilchrist, J., & Nichols, H. J. (2010). Reproductive control via eviction (but not the threat of eviction) in banded mongooses. Proceedings of the Royal Society of London B: Biological Sciences, 277, 2219–2226.CrossRefGoogle Scholar
  8. Cant, M. A., Llop, J. B., & Field, J. (2006). Individual variation in social aggression and the probability of inheritance: Theory and a field test. The American Naturalist, 167, 837–852.PubMedCrossRefGoogle Scholar
  9. Cant, M. A., & Reeve, H. K. (2002). Female control of the distribution of paternity in cooperative breeders. The American Naturalist, 160, 602–611.PubMedCrossRefGoogle Scholar
  10. Carnes, L. M., Lewis, R. J., & Nunn, C. L. (2011). Effects of the distribution of female primates on the number of males. PloS ONE, 6, e19853.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Charpentier, M., Peignot, P., Hossaert-McKey, M., Gimenez, O., Setchell, J. M., & Wickings, E. J. (2005). Constraints on control: Factors influencing reproductive success in male mandrills (Mandrillus sphinx). Behavioral Ecology, 16, 614–623.CrossRefGoogle Scholar
  12. Clutton-Brock, T. H. (1998). Reproductive skew, concessions and limited control. Trends in Ecology & Evolution, 13, 288–292.CrossRefGoogle Scholar
  13. Clutton-Brock, T. H. (2006). Cooperative breeding in mammals. In P. M. Kappeler & C. P. van Schaik (Eds.), Cooperation in primates and humans: Mechanisms and evolution (pp. 173–190). Berlin: Springer Science+Business Media.CrossRefGoogle Scholar
  14. Clutton-Brock, T. H., Brotherton, P. N. M., Smith, R., McIlrath, G. M., Kansky, R., Gaynor, D., O'Riain, M. J., & Skinner, J. D. (1998). Infanticide and expulsion of females in a cooperatively breeding mammal. Proceedings of the Royal Society of London B: Biological Sciences, 265, 2291–2295.CrossRefGoogle Scholar
  15. Clutton-Brock, T. H., Hodge, S. J., Spong, G., Russell, A. F., Jordan, N. R., Bennett, N. C., Sharpe, L. L., & Manser, M. B. (2006). Intrasexual competition and sexual selection in cooperative mammals. Nature, 444, 1065–1068.PubMedCrossRefGoogle Scholar
  16. Clutton-Brock, T. H., & Huchard, E. (2013). Social competition and its consequences in female mammals. Journal of Zoology, 289, 151–171.CrossRefGoogle Scholar
  17. Cowlishaw, G., & Dunbar, R. I. M. (1991). Dominance rank and mating success in male primates. Animal Behaviour, 41, 1045–1056.CrossRefGoogle Scholar
  18. Enquist, M., & Leimar, O. (1990). The evolution of fatal fighting. Animal Behaviour, 39, 1–9.CrossRefGoogle Scholar
  19. Field, J., & Cant, M. A. (2009). Reproductive skew in primitively eusocial wasps: How useful are current models. In R. Hager & C. B. Jones (Eds.), Reproductive skew in vertebrates: Proximate and ultimate causes (pp. 305–333). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  20. Field, J., Solis, C. R., Queller, D. C., & Strassmann, J. E. (1998). Social and genetic structure of paper wasp cofoundress associations: Tests of reproductive skew models. The American Naturalist, 151, 545–563.PubMedCrossRefGoogle Scholar
  21. Gilchrist, J. S. (2006). Female eviction, abortion, and infanticide in banded mongooses (Mungos mungo): Implications for social control of reproduction and synchronized parturition. Behavioral Ecology, 17, 664–669.CrossRefGoogle Scholar
  22. Gogarten, J. F., & Koenig, A. (2013). Reproductive seasonality is a poor predictor of receptive synchrony and male reproductive skew among nonhuman primates. Behavioral Ecology and Sociobiology, 67, 123–134.CrossRefGoogle Scholar
  23. Heg, D., Bergmüller, R. D. B., Otti, O., Bachar, Z., Burri, Z., Heckel, G., & Taborsky, M. (2006). Chichlids do not adjust reproductive skew to the availability of independent breeding options. Behavioral Ecology, 17, 419–429.CrossRefGoogle Scholar
  24. Heg, D., & Hamilton, I. M. (2008). Tug-of-war over reproduction in a cooperatively breeding cichlid. Behavioral Ecology and Sociobiology, 62, 1249–1257.CrossRefGoogle Scholar
  25. Henzi, S.P., Clarke, P.M.R., van Schaik, C.P., Pradhan, G.R., & Barrett, L. (2010). Infanticide and reproductive restraint in a polygynous social mammal. Proceedings of the National Academy of Sciences of the USA, 107, 2130-2135.Google Scholar
  26. Kappeler, P. M., & Port, M. (2008). Mutual tolerance or reproductive competition? Patterns of reproductive skew among male redfronted lemurs (Eulemur fulvus rufus). Behavioral Ecology and Sociobiology, 62, 1477–1488.CrossRefGoogle Scholar
  27. Kappeler, P. M., & Schäffler, L. (2008). The lemur syndrome unresolved: Extreme male reproductive skew in sifakas (Propithecus verreauxi), a sexually monomorphic primate with female dominance. Behavioral Ecology and Sociobiology, 62, 1007–1010.CrossRefGoogle Scholar
  28. Kokko, H., & Johnstone, R. A. (1999). Social queuing in animal societies: A dynamic model of reproductive skew. Proceedings of the Royal Society of London B: Biological Sciences, 266, 571–578.CrossRefGoogle Scholar
  29. Kokko, H., Johnstone, R. A., & Clutton-Brock, T. H. (2001). The evolution of cooperative breeding through group augmentation. Proceedings of the Royal Society of London B: Biological Sciences, 268, 187–196.CrossRefGoogle Scholar
  30. Kutsukake, N., & Nunn, C. L. (2006). Comparative tests of reproductive skew in male primates: The roles of demographic factors and incomplete control. Behavioral Ecology and Sociobiology, 60, 695–706.CrossRefGoogle Scholar
  31. Kutsukake, N., & Nunn, C. L. (2009). The causes and consequences of reproductive skew in male primates. In R. Hager & C. B. Jones (Eds.), Reproductive skew in vertebrates: Proximate and ultimate causes (p. 165-195). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  32. Langer, P., Hogendoorn, K., & Keller, L. (2004). Tug-of-war over reproduction in a social bee. Nature, 428, 844–847.PubMedCrossRefGoogle Scholar
  33. Ligon, J. D., & Burt, D. B. (2004). Evolutionary origins. In W. D. Koenig & J. L. Dickinson (Eds.), Ecology and evolution of cooperative breeding in birds (pp. 5–34). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  34. Lindenfors, P., & Tullberg, B. S. (1998). Phylogenetic analyses of primate size evolution: The consequences of sexual selection. Biological Journal of the Linnean Society, 64, 413–447.CrossRefGoogle Scholar
  35. MacCormick, H. A., MacNulty, D. R., Bosacker, A. L., Lehmann, C., Bailey, A., Collins, D. A., & Packer, C. R. (2012). Male and female aggression: Lessons from sex, rank, age, and injury in olive baboons. Behavioral Ecology, 23, 684–691.CrossRefGoogle Scholar
  36. Nonacs, P. (2006). The rise and fall of transactional skew theory in the model genus Polistes. Annales Zoologici Fenniciis, 43, 443–455.Google Scholar
  37. Nonacs, P., & Hager, R. (2010). The past, present and future of reproductive skew theory and experiments. Biological Reviews, 86, 271–298.CrossRefGoogle Scholar
  38. Nonacs, P., Reeve, H. K., & Starks, P. T. (2004). Optimal reproductive skew theory fails to predict aggression in wasps. Proceedings of the Royal Society of London B: Biological Sciences, 271, 811–817.CrossRefGoogle Scholar
  39. Nunn, C. L. (1999). The number of males in primate social groups: A comparative test of the socioecological model. Behavioral Ecology and Sociobiology, 46, 1–13.CrossRefGoogle Scholar
  40. Nunn, C. L. (2011). The comparative method in evolutionary anthropology and biology. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  41. Ostner, J., Nunn, C. L., & Schülke, O. (2008). Female reproductive synchrony predicts biased paternity across primates. Behavioral Ecology, 19, 1150–1158.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Plavcan, J. M., & van Schaik, C. P. (1997). Intrasexual competition and body weight dimorphism in anthropoid primates. American Journal of Physical Anthropology, 103, 37–67.Google Scholar
  43. Port, M., & Cant, M. A. (2013). Longevity suppresses conflict in animal societies. Biology Letters. doi: 10.1098/rsbl.2013.0680.
  44. Port, M., & Johnstone, R. A. (2013). Facing the crowd: intruder pressure, within-group competition, and the resolution of conflicts over group-membership. Ecology and Evolution, 3, 1209–1218.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Port, M., Johnstone, R. A., & Kappeler, P. M. (2012). The evolution of multi-male groups in Verreaux's sifaka, or how to test an evolutionary demographic model. Behavioral Ecology, 23, 889–897.CrossRefGoogle Scholar
  46. Port, M., & Kappeler, P. M. (2010). The utility of reproductive skew models in the study of male primates—a critical evaluation. Evolutionary Anthropology, 19, 46–56.CrossRefGoogle Scholar
  47. Preston, B. T., Stevenson, I. R., Pemberton, J. M., & Wilson, K. (2001). Dominant male rams lose out by sperm depletion. Nature, 409, 681–682.PubMedCrossRefGoogle Scholar
  48. Reeve, H. K., Emlen, S. T., & Keller, L. (1998). Reproductive sharing in animal societies: Reproductive incentives or incomplete control by dominant breeders. Behavioral Ecology, 9, 267–278.CrossRefGoogle Scholar
  49. Reeve, H. K., & Ratniecks, F. L. W. (1993). Queen-queen conflict in polygynous societies: Mutual tolerance and reproductive skew. In L. Keller (Ed.), Queen number and sociality in insects (pp. 45–85). Oxford: Oxford University Press.Google Scholar
  50. Reeve, H. K., & Shen, S. F. (2006). A missing model in reproductive skew theory: the bordered tug-of-war. Proceedings of the National Academy of Sciences of the USA, 103, 8430–8434.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Röseler, P. F. (1991). Reproductive competition during colony establishment. In K. G. Ross & R. W. Matthews (Eds.), The social biology of wasps (pp. 309–335). Ithaca, NY: Cornell University Press.Google Scholar
  52. Saltzman, W., Liedl, K. J., Salper, O. J., Pick, R. R., & Abbott, D. H. (2008). Post-conception reproductive competition in cooperatively breeding common marmosets. Hormones and Behavior, 53, 274–286.PubMedCrossRefGoogle Scholar
  53. Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science, 308, 648–652.PubMedCrossRefGoogle Scholar
  54. Setchell, J. M., & Kappeler, P. M. (2003). Selection in relation to sex in primates. Advances in the Study of Behavior, 33, 87–173.CrossRefGoogle Scholar
  55. Shen, S. F., & Reeve, H. K. (2010). Reproductive skew theory unified: The general bordered tug-of-war model. Journal of Theoretical Biology, 263, 1–12.PubMedCrossRefGoogle Scholar
  56. Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559.PubMedCrossRefGoogle Scholar
  57. Tibbetts, E. A., & Reeve, H. K. (2000). Aggression and resource sharing among foundresses in the social wasp Polistes dominulus: Testing transactional theories of conflict. Behavioral Ecology and Sociobiology, 48, 344–352.CrossRefGoogle Scholar
  58. Vehrencamp, S. L. (1983a). Optimal degree of skew in cooperative societies. American Zoologist, 23, 327–335.Google Scholar
  59. Vehrencamp, S. L. (1983b). A model for the evolution of despotic versus egalitarian societies. Animal Behaviour, 31, 667–682.CrossRefGoogle Scholar
  60. Widdig, A., Bercovitch, F. B., Streich, W. J., Sauermann, U., Nürnberg, P., & Krawaczak, M. (2004). A longitudinal analysis of reproductive skew in male rhesus macaques. Proceedings of the Royal Society of London B: Biological Sciences, 271, 819–826.CrossRefGoogle Scholar
  61. Young, A. J., Carlson, A. A., Monfort, S., Russell, A. F., Bennett, N. C., & Clutton-Brock, T. H. (2006). Stress and the suppression of sobordinate reproduction in cooperatively breeding meerkats. Proceedings of the National Academy of Sciences of the USA, 103, 12005–12010.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Courant Research Center Evolution of Social BehaviorUniversity of GöttingenGöttingenGermany
  2. 2.Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of Exeter, Cornwall CampusPenrynUK

Personalised recommendations