International Journal of Primatology

, Volume 35, Issue 1, pp 258–287

The Behavioral Ecology of Color Vision: Considering Fruit Conspicuity, Detection Distance and Dietary Importance

  • A. D. Melin
  • C. Hiramatsu
  • N. A. Parr
  • Y. Matsushita
  • S. Kawamura
  • L. M. Fedigan
Article

Abstract

Primate color vision is well suited for investigating the genetic basis of foraging behavior owing to a clear genotype–phenotype linkage. Finding fruits amid tropical foliage has long been proffered as an adaptive explanation for primate trichromacy, yet there is a dearth of systematic evaluations of frugivory as an ecological selective force. We studied the behavioral ecology of wild capuchins (Cebus capucinus) in northwestern Costa Rica across the annual cycle and modeled the ability of three dichromatic and three trichromatic phenotypes to discriminate fruits from leaves, a task that represents long-distance search for food patches in a tropical forest. Models of the trichromatic phenotypes could correctly discriminate approximately three-quarters of the total capuchin dietary fruits from leaves, including some fruits subjectively classified as having “cryptic” (greenish-brownish) hues. In contrast, models of dichromatic phenotypes could discriminate fewer than one-third of the fruits. This pattern held when we restricted our analysis to only the most heavily consumed diet items, preferred foods, or seasonally critical species. We in addition highlight the potential of fruit species with small patch sizes to confer an advantage to trichromats, as these resources are anticipated to provide a high finder’s reward. Our results are consistent with the hypothesis that long-distance detection of fruit patches exerts a selective pressure on trichromacy in neotropical primates, and suggest that greenish-brownish fruits might have played an underappreciated role in the evolution of primate color vision.

Keywords

Capuchin Cebus Foraging Opsin genes Polymorphic trichromacy Spectrophotometry 

References

  1. Allen, G. (1879). The color sense: its origins and development. London: Trubner & Co.Google Scholar
  2. Araújo, M., Lima, E. M., & Pessoa, V. (2006). Modeling dichromatic and trichromatic sensitivity to the color properties of fruits eaten by squirrel monkeys (Saimiri sciureus). American Journal of Primatology, 68, 1129–1137.PubMedCrossRefGoogle Scholar
  3. Bompas, A., Kendall, G., & Sumner, P. (2013). Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception, 4, 84–94.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bradley, B. J., & Lawler, R. R. (2011). Linking genotypes, phenotypes, and fitness in wild primate populations. Evolutionary Anthropology: Issues, News, and Reviews, 20, 104–119.CrossRefGoogle Scholar
  5. Bunce, J. A., Isbell, L. A., Grote, M., & Jacobs, G. H. (2011). Color vision variation and foraging behavior in wild neotropical titi monkeys (Callicebus brunneus): Possible mediating roles for spatial memory and reproductive status. International Journal of Primatology, 32, 1058–1075.CrossRefGoogle Scholar
  6. Caine, n. G. (2002). Seeing red: consequences of individual differences in color vision in callitrichid primates. In L. E. Millor (Ed.), Eat or be eaten (pp. 58–73). Cambridge: Cambridge University Press.Google Scholar
  7. Caine, n. G., & Mundy, n. I. (2000). Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependant on food colour. Proceedings of the Royal Society of London B: Biological Sciences, 267, 439–444.CrossRefGoogle Scholar
  8. Chang, C-C., & Lin, C-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology.Google Scholar
  9. Changizi, M. A., Zhang, Q., & Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2, 217–221.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chapman, C., & Fedigan, L. (1990). Dietary differences between neighbouring Cebus capucinus groups: local traditions, food availability or responses to food profitability? Folia Primatologica, 54, 177–186.CrossRefGoogle Scholar
  11. Chapman, C. A., Chapman, L. J., Wrangham, R., Hunt, K., Gebo, D., & Gardner, L. (1992). Estimators of fruit abundance of tropical trees. Biotropica, 24, 527–531.CrossRefGoogle Scholar
  12. Corlett, R. T. (2011). How to be a frugivore (in a changing world). Acta Oecologica Google Scholar
  13. Coss, R. G., & Ramakrishnan, U. (2000). Perceptual aspects of leopard recognition by wild bonnet macaques (Macaca radiata). Behavior, 137, 315–335.CrossRefGoogle Scholar
  14. Cropp, S., Boinski, S., & Li, W. H. (2002). Allelic variation in the squirrel monkey x-linked color vision gene: biogeographical and behavioral correlates. Journal of Molecular Evolution, 54, 734–745.PubMedCrossRefGoogle Scholar
  15. Cunningham, E., & Janson, C. (2007). Integrating information about location and value of resources by white-faced saki monkeys (Pithecia pithecia). Animal Cognition, 10, 293–304.PubMedCrossRefGoogle Scholar
  16. Deeb, S., Lindsey, D., Hibiya, Y., Sanocki, E., Winderickx, J., Teller, D., & Motulsky, A. (1992). Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. American Journal of Human Genetics, 51, 687–700.PubMedCentralPubMedGoogle Scholar
  17. Di Bitetti, M., & Janson, C. (2001). Social foraging and the finder's share in capuchin monkeys. Animal Behaviour, 62, 47–56.CrossRefGoogle Scholar
  18. Dominy, n. J. (2004). Fruits, fingers and fermentation: the sensory cues available to foraging primates. Integrative and Comparative Biology, 44, 295–303.PubMedCrossRefGoogle Scholar
  19. Dominy, n. J., Garber, P. A., Bicca-Marques, J. C., Bicca-Marques, J. C., & de Azevedo-Lopes, M. A. (2003a). Do female tamarins use visual cues to detect fruit rewards more successfully than do males? Animal Behaviour, 66, 829–837.CrossRefGoogle Scholar
  20. Dominy, n. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410, 363–366.PubMedCrossRefGoogle Scholar
  21. Dominy, n. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186.CrossRefGoogle Scholar
  22. Dominy, n. J., Svenning, J.-C., & Li, W.-H. (2003b). Historical contingency in the evolution of primate color vision. Journal of Human Evolution, 44, 25–45.PubMedCrossRefGoogle Scholar
  23. Fedigan, L., Melin, A., Addicott, J., & Kawamura, S. (In Press). Color vision and fitness variation in wild neotropical monkeys. Implications for the heterozygote superiority hypothesis. PloS One.Google Scholar
  24. Fedigan, L. M., & Jack, K. M. (2011). Two girls for every boy: the effects of group size andcomposition on the reproductive success of male and female white-faced capuchins. American Journal of Physical Anthropology, 317–326.Google Scholar
  25. Fragaszy, D., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin: the biology of the genus Cebus. Cambridge: Cambridge University Press.Google Scholar
  26. Garber, P. A. (2000). Evidence for the use of spatial, temporal and social information by some primate foragers. In S. Boinski & P. A. Garber (Eds.), On the move: how and why animals travel in groups. Chicago: University of Chicago Press.Google Scholar
  27. Gaulin, S. J. C., & Konner, M. J. (1977). On the natural diets of primates, including humans. In R. J. Wurtman & J. J. Wurtman (Eds.), Nutrition and the brain (pp. 1–86). New York: Raven Press.Google Scholar
  28. Gautier-Hion, A., Duplantier, J.-M., Quris, F. F., Sourd, C., Decoux, J.-P., Dubost, G., Emmons, L., Ererd, C., Hecketsweiler, P., Moungazi, A., et al. (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337.CrossRefGoogle Scholar
  29. Harrison, M. E., & Marshall, A. J. (2011). Strategies for the use of fallback foods in apes. International Journal of Primatology, 32, 531–565.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., & Kawamura, S. (2009). Interplay of olfaction and vision in fruit foraging of spider monkeys. Animal Behaviour, 1421–1426.Google Scholar
  31. Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., Matsumoto, Y., & Kawamura, S. (2008). Importance of achromatic contrast in short-range fruit foraging of primates. PloS One, 3, 1–12.CrossRefGoogle Scholar
  32. Hiramatsu, C., Radlwimmer, F. B., Yokoyama, S., & Kawamura, S. (2004). Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of new world monkeys for testing the tuning effect of residues at sites 229 and 233. Vision Research, 44, 2225–2231.PubMedCrossRefGoogle Scholar
  33. Hiramatsu, C., Tsutsui, T., Matsumoto, Y., Aureli, F., Fedigan, L. M., & Kawamura, S. (2005). Color vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. American Journal of Primatology, 67, 447–461.PubMedCrossRefGoogle Scholar
  34. Hiwatashi, T., Okabe, Y., Tsutsui, T., Hiramatsu, C., Melin, A. D., Oota, H., Schaffner, C. M., Aureli, F., Fedigan, L. M., Innan, H., et al. (2010). An explicit signature of balancing selection for color-vision variation in new world monkeys. Molecular Biology and Evolution, 27, 453–464.PubMedCrossRefGoogle Scholar
  35. Isbell, L. A. (2009). The fruit, the tree and the serpent: why we see so well. Boston: Harvard University Press.Google Scholar
  36. Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 2957–2967.PubMedCrossRefGoogle Scholar
  37. Jacobs, G. H. (2010). The verriest lecture 2009: recent progress in understanding mammalian color vision. Ophthalmic and Physiological Optics, 30, 422–434.PubMedCrossRefGoogle Scholar
  38. Jacobs, G. H., & Deegan, J. F., 2nd. (2003). Cone pigment variations in four genera of new world monkeys. Vision Research, 43, 227–236.PubMedCrossRefGoogle Scholar
  39. Janson, C. (1983). Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science, 219, 187–189.PubMedCrossRefGoogle Scholar
  40. Janson, C. (1998). Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. Animal Behaviour, 55, 1229–1243.PubMedCrossRefGoogle Scholar
  41. Janson, C. H., & Di Bitetti, M. S. (1997). Experimental analysis of food detection in capuchin monkeys: effects of distance, travel speed, and resource size. Behavioural Ecology and Sociobiology, 41, 17–24.CrossRefGoogle Scholar
  42. Kamilar, J. M., Heesy, C. P., & Bradley, B. J. (2012). Did trichromatic color vision and red hair color coevolve in primates? American Journal of Primatology.Google Scholar
  43. Kawamura, S., Hiramatsu, C., Melin, A. D., Schaffner, C. M., Aureli, F., & Fedigan, L. M. (2012). Polymorphic color vision in primates: evolutionary considerations. In H. Hirai, H. Imai, & Y. Go (Eds.), Post genome biology of primates (pp. 93–120). Tokyo: Springer Science+Business Media.CrossRefGoogle Scholar
  44. Kays, R. W. (1999). Food preferences of kinkajous (Potus flavus): a frugivorous carnivore. Journal of Mammalogy, 80, 589–599.CrossRefGoogle Scholar
  45. Lambert, J. E. (2009). Primate fallback strategies as adaptive phenotypic plasticity: scale, pattern, and process. American Journal of Physical Anthropology, 140, 759–766.PubMedCrossRefGoogle Scholar
  46. Leighton, M. (1993). Modeling dietary selectivity by bornean orangutans: evidence for integration of multiple criteria in fruit selection. International Journal of Primatology, 14, 257–313.CrossRefGoogle Scholar
  47. Lomascolo, S., & Schaefer, H. M. (2010). Signal convergence in fruits: a result of selection by frugivores? Journal of Evolutionary Biology, 23, 614–624.PubMedCrossRefGoogle Scholar
  48. Lucas, P. W., Dominy, N. J., Riba-Hernandez, P., Stoner, K., Yamashita, N., Loria-Calderon, E., Peterson-Pereira, W., Rojas-Duran, Y., Salas-Pena, R., Solis-Madrigal, S., et al. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57, 2636–2643.PubMedGoogle Scholar
  49. Marshall, A., Boyko, C. M., Feilen, K. L., Boyko, R. H., & Leighton, M. (2009). Defining fallback foods and assessing their importance in primate ecology and evolution. American Journal of Physical Anthropology, 140, 603–614.PubMedCrossRefGoogle Scholar
  50. Marshall, A., & Wrangham, R. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28, 1219–1235.CrossRefGoogle Scholar
  51. McCabe, G. M., & Fedigan, L. M. (2007). Effects of reproductive status on energy intake, ingestion rates and dietary composition of female Cebus capucinus at Santa Rosa, Costa Rica. International Journal of Primatology, 28, 837–851.CrossRefGoogle Scholar
  52. McConkey, K. R., Ario, A., Aldy, F., & Chivers, D. J. (2003). Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu, Central Kalimantan. International Journal of Primatology, 24, 19–32.CrossRefGoogle Scholar
  53. Melin, A., Fedigan, L., Hiramatsu, C., Sendall, C., & Kawamura, S. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Animal Behaviour, 73, 205–214.CrossRefGoogle Scholar
  54. Melin, A. D., Fedigan, L. M., Hiramatsu, C., Hiwatashi, T., Parr, N., & Kawamura, S. (2009). Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. International Journal of Primatology, 30, 753–775.CrossRefGoogle Scholar
  55. Melin, A. D., Fedigan, L. M., Hiramatsu, C., & Kawamura, S. (2008). Polymorphic color vision in white-faced capuchins (Cebus capucinus): is there foraging niche divergence among phenotypes? Behavioral Ecology and Sociobiology, 62, 659–670.CrossRefGoogle Scholar
  56. Melin, A. D., Fedigan, L. M., Young, H. C., & Kawamura, S. (2010). Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys? Current Zoology, 56, 300–312.Google Scholar
  57. Melin, A. D., Hiramatsu, C., Fedigan, L. M., Schaffner, C., Aureli, F., & Kawamura, S. (2012). Polymorphism and adaptation of primate colour vision. In P. Pontarotti (Ed.), Evolutionary biology: mechanisms and trends (pp. 225–241). Berlin and Heidelberg: Springer Science + Business Media.CrossRefGoogle Scholar
  58. Melin, A. D., Kline, D. W., Hickey, C., & Fedigan, L. M. (2013a). Food search through the eyes of a monkey: a functional substitution approach for assessing the ecology of primate color vision. Vision Research, 86, 87–96.PubMedCrossRefGoogle Scholar
  59. Melin, A. D., Young, H. C., Mosdossy, K., & Fedigan, L. (In Press). Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence. Journal of Human Evolution.Google Scholar
  60. Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate color vision. Journal of Experimental Biology, 146, 21–38.PubMedGoogle Scholar
  61. Mollon, J. D., Bowmaker, J. K., & Jacobs, G. H. (1984). Variations of color vision in a new world primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London B: Biological Sciences, 222, 373–399.PubMedCrossRefGoogle Scholar
  62. Oluput, W., Waser, P. M., & Chapman, C. (1998). Fruit finding by mangabeys (Lophocebus albigena): are monitoring of fig trees and use of sympatric frugivore calls possible strategies. International Journal of Primatology, 19, 339–353.CrossRefGoogle Scholar
  63. Osorio, D., Smith, A. C., Vorobyev, M., & Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164, 696–708.CrossRefGoogle Scholar
  64. Osorio, D., & Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London B: Biological Sciences, 263, 593–599.CrossRefGoogle Scholar
  65. Parr, N. A., Melin, A. D., & Fedigan, L. M. (2011). Figs are more than fallback foods: the relationship between Ficus and Cebus in a tropical dry forest. International Journal of Zoology, 2011, 1–10.CrossRefGoogle Scholar
  66. Parraga, C. A., Troscianko, T., & Tolhurst, D. J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology, 12, 483–487.PubMedCrossRefGoogle Scholar
  67. Perini, E. S., Pessoa, V. F., & Pessoa, D. (2009). Detection of fruit by the cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311A, 289–302.CrossRefGoogle Scholar
  68. Pessoa, D. M., Cunha, J. F., Tomaz, C., & Pessoa, V. F. (2005a). Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications. Folia Primatologica (Basel), 76, 125–134.CrossRefGoogle Scholar
  69. Pessoa, D. M., Tomaz, C., & Pessoa, V. F. (2005b). Color vision in marmosets and tamarins: behavioural evidence. American Journal of Primatology, 67, 487–495.PubMedCrossRefGoogle Scholar
  70. Polyak, S. (1957). The vertebrate visual system. Chicago: The University of Chicago Press.Google Scholar
  71. Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., & Mollon, J. D. (1998). Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Research, 38, 3321–3327.PubMedCrossRefGoogle Scholar
  72. Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 356, 229–283.PubMedCrossRefGoogle Scholar
  73. Riba-Hernandez, P., Stoner, K. E., & Osorio, D. (2004). Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys. Journal of Experimental Biology, 207, 2465–2470.PubMedCrossRefGoogle Scholar
  74. Rose, L. M. (1994). Sex differences in diet and foraging behaviour in white-faced capuchins (Cebus capucinus). International Journal of Primatology, 15, 95–114.CrossRefGoogle Scholar
  75. Rowe, M. P., & Jacobs, G. H. (2004). Cone pigment polymorphism in new world monkeys: are all pigments created equal? Visual Neuroscience, 21, 217–222.PubMedCrossRefGoogle Scholar
  76. Rowe, M. P., & Jacobs, G. H. (2007). Naturalistic color discriminations in polymorphic platyrrhine monkeys: effects of stimulus luminance and duration examined with functional substitution. Visual Neuroscience, 24, 17–23.PubMedCrossRefGoogle Scholar
  77. Saito, A., Kawamura, S., Mikami, A., Ueno, Y., Hiramatsu, C., Koida, K., Fujita, K., Kuroshima, H., & Hasegawa, T. (2005). Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine new world monkey, capuchin (Cebus apella). American Journal of Primatology, 67, 471–485.PubMedCrossRefGoogle Scholar
  78. Simmen, B., & Sabatier, D. (1996). Diets of some French Guianan primates: food composition and food choices. International Journal of Primatology, 17, 661–694.CrossRefGoogle Scholar
  79. Smith, A. C., Buchanan-Smith, H., Surridge, A., & Mundy, N. (2003a). Leaders of progressions in wild mixed-species troops of saddleback (Saguinus fuscicollis) and mustached tamarins (S. mystax), with an emphasis on color vision and sex. American Journal of Primatology, 61, 145–157.PubMedCrossRefGoogle Scholar
  80. Smith, A. C., Buchanan-Smith, H. M., Surridge, A. K., Osorio, D., & Mundy, N. I. (2003b). The effect of color vision on the detection and selection of fruits by tamarins (Saguinus spp.). Journal of Experimental Biology, 206, 3159–3165.PubMedCrossRefGoogle Scholar
  81. Smith, A. C., Surridge, A. K., Prescott, M. J., Osorio, D., Mundy, N. I., & Buchanan-Smith, H. M. (2012). Effect of colour vision status on insect prey capture efficiency of captive and wild tamarins (Saguinus spp.). Animal Behaviour, 83, 479–486.CrossRefGoogle Scholar
  82. Snodderly, D. M. (1979). Visual descriminations encountered in food foraging by a neotropical primate: implications for the evolution of color vision. In E. H. Burtt Jr. (Ed.), The behavioral significance of color (pp. 237–279). New York: Garland.Google Scholar
  83. Stevens, M., Stoddard, M., & Higham, J. (2009). Studying primate color: towards visual system-dependent methods. International Journal of Primatology, 30, 893–917.CrossRefGoogle Scholar
  84. Stevenson, P. R., & Link, A. (2010). Fruit preferences of Ateles belzebuth in Tinigua Park, northwestern Amazonia. International Journal of Primatology, 31, 393–407.CrossRefGoogle Scholar
  85. Stoner, K. E., Riba-Hernandez, P., & Lucas, P. W. (2005). Comparative use of color vision for frugivory by sympatric species of platyrrhines. American Journal of Primatology, 67, 399–409.PubMedCrossRefGoogle Scholar
  86. Sumner, P., & Mollon, J. D. (2000). Catarrhine photopigments are optimized for detecting targets against a foliage background. Journal of Experimental Biology, 203, 1963–1986.PubMedGoogle Scholar
  87. Sumner, P., & Mollon, J. D. (2000b). Chromacy as a signal of ripeness in fruits taken by primates. Journal of Experimental Biology, 203, 1987–2000.Google Scholar
  88. Sumner, P., & Mollon, J. D. (2003a). Colors of primate pelage and skin: objective assessment of conspicuousness. American Journal of Primatology, 59, 67–91.PubMedCrossRefGoogle Scholar
  89. Sumner, P., & Mollon, J. D. (2003b). Did primate trichromacy evolve for frugivory or folivory? In J. D. Mollon, J. Pokorny, & K. Knoblanch (Eds.), Normal and defective colour vision (pp. 21–30). Oxford: Oxford University Press.CrossRefGoogle Scholar
  90. Surridge, A. K., & Mundy, N. I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates. Molecular Ecology, 11, 2157–2169.PubMedCrossRefGoogle Scholar
  91. Surridge, A. K., Osorio, D., & Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. Trends in Ecology & Evolution, 51, 198–205.CrossRefGoogle Scholar
  92. Surridge, A. K., Suarez, S. S., Buchanan-Smith, H. M., Smith, A. C., & Mundy, N. I. (2005). Color vision pigment frequencies in wild tamarins (Saguinus spp.). American Journal of Primatology, 67, 463–470.PubMedCrossRefGoogle Scholar
  93. Tan, Y., & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature, 402, 36.PubMedCrossRefGoogle Scholar
  94. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRefGoogle Scholar
  95. Vapnik, V. N. (1998). Statistical learning theory. New Work: Wiley.Google Scholar
  96. Vogel, E., Neitz, M., & Dominy, N. (2007). Effect of color vision phenotype in the foraging of white-faced capuchins, Cebus capucinus. Behavioral Ecology, 18, 292–297.CrossRefGoogle Scholar
  97. Vogel, E. R. (2006). Rank differences in energy intake rates in white-faced capuchin monkeys, Cebus capucinus: The effects of contest competition. Behavioral Ecology and Sociobiology, 58, 333–344.CrossRefGoogle Scholar
  98. Vorobyev, M. (2004). Ecology and evolution of primate colour vision. Clinical and Experimental Optometry, 87, 230–238.PubMedCrossRefGoogle Scholar
  99. Vorobyev, M., Marshall, J., Osorio, D., de Ibarra, N. H., & Menzel, R. (2001). Colourful objects through animal eyes. Color Research and Application, Supplement, 26, s214–s217.CrossRefGoogle Scholar
  100. Wyszecki, G., & Styles, W. S. (1982). Color science: concepts and methods, quantitative data and formulae. New Work: Wiley.Google Scholar
  101. Yokoyama, S. (1997). Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. Annual Review of Genetics, 31, 315–336.PubMedCrossRefGoogle Scholar
  102. Yokoyama, S., & Radlwimmer, F. B. (2001). The molecular genetics and evolution of red and green color vision in vertebrates. Genetics, 158, 1697–1710.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. D. Melin
    • 1
    • 2
  • C. Hiramatsu
    • 3
  • N. A. Parr
    • 1
  • Y. Matsushita
    • 4
  • S. Kawamura
    • 4
  • L. M. Fedigan
    • 1
  1. 1.Department of AnthropologyUniversity of CalgaryCalgaryCanada
  2. 2.Department of AnthropologyWashington UniversitySt. LouisUSA
  3. 3.Department of Human Science, Faculty of DesignKyushu UniversityMinamikuJapan
  4. 4.Department of Integrated BiosciencesUniversity of TokyoKashiwa-shiJapan

Personalised recommendations