International Journal of Primatology

, Volume 34, Issue 5, pp 957–972 | Cite as

Home-Range Use and Activity Patterns of the Red Langur (Presbytis rubicunda) in Sabangau Tropical Peat-Swamp Forest, Central Kalimantan, Indonesian Borneo

  • David A. Ehlers Smith
  • Yvette C. Ehlers Smith
  • Susan M. Cheyne


Knowledge of a species’ ranging patterns is vital for understanding its behavioral ecology and vulnerability to extinction. Given the abundance and even distribution of leaves in forested habitats, folivorous primates generally spend less time feeding; more time resting; have shorter day ranges; and require smaller home ranges than frugivorous primates. To test the influence of frugivory on ranging behavior, we established the activity budget and home-range size and use in a highly frugivorous population of the Borneo-endemic colobine, Presbytis rubicunda, within Sabangau tropical peat-swamp forest, Central Kalimantan, and examined relationships between fruit availability and ranging patterns. We collected 6848 GPS locations and 10,702 instantaneous focal behavioral scans on a single group between January and December 2011. The group had the largest home-range size recorded in genus Presbytis (kernel density estimates: mean = 108.3 ± SD 3.8 ha, N = 4 bandwidths). The annual activity budget comprised 48 ± SD 4.0% resting; 29.3 ± SD 3.9% feeding, 14.2 ± SD 2.5% traveling, and 0.4 ± SD 0.4% social behaviors. Mean monthly day-range length was the highest recorded for any folivorous primate (1645 ± SD 220.5 m/d). No significant relationships existed between ranging variables and fruit availability, and ranging behaviors did not vary significantly across seasons, potentially owing to low fluctuations in fruit availability. Our results suggest that colobine monkeys maintain larger than average ranges when high-quality food resources are available. Their extensive range requirements imply that protecting large, contiguous tracts of habitat is crucial in future conservation planning for Presbytis rubicunda.


Activity budget Borneo Colobinae Folivore Kernel density estimates Utilization distribution 



We thank the Indonesian State Ministry of Research and Technology (RISTEK), the Directorate General of Forest Protection and Nature Conservation (PHKA), and Center for the International Cooperation in Sustainable Use of Tropical Peatlands (CIMTROP) for research permissions. Funding was provided by Chester Zoo and the North of England Zoological Society; Columbus Zoo and Aquariums; Primate Conservation, Inc.; and the Orangutan Tropical Peatland Project (OuTrop). CIMTROP provided essential logistical support. We thank all field researchers who assisted in data collection: Supian Sabangau, Abdul Azis, Karen Jeffers, Camille Hill, Helen Thompson, Nick Marchant, Luke Ward, Bernat Ripoll, and Benjamin Buckley. Thanks also to Dr. Suwido H. Limin; Professor Vincent Nijman, Dr. Mark Harrison and David Dellatore, and to Editor-in-Chief Dr. Joanna Setchell and three anonymous reviewers for helpful comments that improved the manuscript.


  1. Altmann, J. (1974). Observational study of behaviour: Sampling methods. Behaviour, 49, 227–265.PubMedCrossRefGoogle Scholar
  2. Altmann, S. A., & Altmann, J. (1970). Baboon ecology: African field research. Basel: S. Karger.Google Scholar
  3. Basabose, A. K. (2005). Ranging patterns of chimpanzees in a montane forest of Kahuzi, Democratic Republic of Congo. International Journal of Primatology, 26, 33–54.CrossRefGoogle Scholar
  4. Bekoff, M., & Mech, L. D. (1984). Simulation analysis of space use: Home range estimates, variability, and sample size. Behavior Research Methods and Instrumentation, 16, 32–37.CrossRefGoogle Scholar
  5. Bennett, E. L. (1983). The banded langur: Ecology of a colobine in West Malaysian rain-forest. Ph.D. thesis, Cambridge University.Google Scholar
  6. Bennett, E. L. (1986). Environmental correlates of ranging behavior in the banded langur, Presbytis melalophos. Folia Primatologica, 47, 26–38.CrossRefGoogle Scholar
  7. Bennett, E. L., & Davies, A. G. (1994). The ecology of Asian colobines. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 129–172). Cambridge: Cambridge University Press.Google Scholar
  8. Bennett, E. L., & Sebastian, A. C. (1988). Social organization and ecology of proboscis monkeys (Nasalis larvatus) in mixed coastal forest in Sarawak. International Journal of Primatology, 9, 233–255.CrossRefGoogle Scholar
  9. Beyer, H. L. (2012). Geospatial Modelling Environment (Version Available at:
  10. Biebouw, K. (2009). Home range size and use in Allocebus trichotis in Analamazaotra Special Reserve, Central Eastern Madagascar. International Journal of Primatology, 30, 367–386.CrossRefGoogle Scholar
  11. Bleisch, W. V., Cheng, A. S., Ren, X. D., & Xie, J. H. (1993). Preliminary results from a field study of wild Guizhou snub-nosed monkeys (Rhinopithecus brelichi). Folia Primatologica, 60, 72–92.CrossRefGoogle Scholar
  12. Bocian, C. M. (1997). Niche separation of black-and-white colobus monkeys (Colobus angolensis and C. Guereza) in the Ituri Forest. Ph.D thesis, City University of New York.Google Scholar
  13. Boinski, S. (1987). Habitat use by squirrel monkeys (Saimiri oerstedii) in Costa Rica. Folia Primatologica, 49, 151–167.CrossRefGoogle Scholar
  14. Boonratana, R. (1994). The ecology and behaviour of the proboscis monkey (Nasalis larvatus) in the Lower Kinabatangan, Sabah. Ph.D. thesis, Mahidol University, Bangkok.Google Scholar
  15. Boonratana, R., & Le, X. C. (1998). Preliminary observations of the ecology and behavior of Tonkin snub-nosed monkey (Rhinopithecus [Presbytiscus] avunculus) in Nortern Vietnam. In N. G. Jablonski (Ed.), The natural history of the doucs and snub-nosed monkeys (pp. 207–216). Singapore: World Scientific Press.CrossRefGoogle Scholar
  16. Boyle, S. A., Lourenco, W. C., da Silva, L. R., & Smith, A. T. (2009). Home range estimates vary with sample size and methods. Folia Primatologica, 80, 33–42.CrossRefGoogle Scholar
  17. Burt, W. H. (1943). Territoriality and home range concepts as applied to mammals. Journal of Mammalogy, 24, 346–352.CrossRefGoogle Scholar
  18. Chapman, C. A., & Chapman, L. J. (2000). Determinants of group size in primates: The importance of travel costs. In S. Boinski & P. A. Garber (Eds.), On the move: How and why animals travel in groups (pp. 24–42). Chicago: The University of Chicago Press.Google Scholar
  19. Chapman, C. A., & Pavelka, M. S. M. (2005). Group size in folivorous primates: Ecological constraints and the possible influence of social factors. Primates, 46, 1–9.PubMedCrossRefGoogle Scholar
  20. Clutton-Brock, T. H. (1975). Ranging behaviour of red colobus (Colobus badius tephrosceles) in Gombe National Park. Animal Behavior, 23, 706–722.CrossRefGoogle Scholar
  21. Clutton-Brock, T. H. (1977). Some aspects of intraspecific variation in feeding and ranging behavior in primates. In T. H. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes (pp. 539–556). London: Academic Press.Google Scholar
  22. Clutton-Brock, T. H., & Harvey, P. H. (1977). Species differences in feeding and ranging behavior in primates. In T. H. Clutton-Brock (Ed.), Primate ecology (pp. 557–583). London: Academic Press.Google Scholar
  23. Clutton-Brock, T. H., & Harvey, P. H. (1979). Home range size, population density and phylogeny in primates. In I. S. Berstein & E. O. Smith (Eds.), Primate ecology and human origins: Ecological influences on social organization (pp. 201–214). New York: Garland.Google Scholar
  24. Curran, L. M., Trigg, S. N., McDonald, A. K., Astiani, D., Hardiono, Y. M., Siregar, P., Caniago, I., & Kasischke, E. (2004). Lowland forest loss in protected areas of Borneo. Science, 303, 1000–1003.PubMedCrossRefGoogle Scholar
  25. Curtin, S. H. (1975). The socioecology of the common langur, Presbytis entellus, in the Nepal Himalayas. Ph.D. thesis, University of California, Berkeley.Google Scholar
  26. Curtin, S. H. (1976). Niche separation in sympatric Malaysian leaf-monkeys (Presbytis obscura and Presbytis melalophos). Yearbook of Physical Anthropology, 20, 421–439.Google Scholar
  27. Curtin, S. H. (1980). Dusky and banded leaf monkeys. In D. J. Chivers (Ed.), Malayan forest primates (pp. 107–145). New York: Plenum Press.Google Scholar
  28. Dasilva, G. L. (1992). The western black-and-white colobus as a low-energy strategist: Activity budgets, energy expenditure and energy intake. Journal of Animal Ecology, 61, 79–91.CrossRefGoogle Scholar
  29. Davies, A. G. (1984). An ecological study of the red leaf monkey (Presbytis rubicunda) in the dipterocarp forests of Sabah, northern Borneo. Ph.D. thesis, University of Cambridge.Google Scholar
  30. Davies, A. (1991). Seed-eating by red leaf monkeys (Presbytis rubicunda) in dipterocarp forest of northern Borneo. International Journal of Primatology, 12, 119–144.CrossRefGoogle Scholar
  31. Davies, A. G., Bennett, E. L., & Waterman, P. G. (1988). Food selection by two Southeast Asian colobine monkeys (Presbytis rubicunda and Presbytis melalophos) in relation to plant chemistry. Biological Journal of the Linnean Society, 34, 33–56.CrossRefGoogle Scholar
  32. Defler, T. R. (1995). The time budget of a group of wild woolly monkeys, Lagothrix lagothricha. International Journal of Primatology, 16, 107–120.CrossRefGoogle Scholar
  33. Dias, L. G., & Strier, K. B. (2003). Effects of group size on ranging patterns in Brachyteles arachnoides hypoxanthus. International Journal of Primatology, 24, 209–221.CrossRefGoogle Scholar
  34. Di Fiore, A., & Campbell, C. J. (2011). The Atelines: Variation in ecology, behavior, and social organization. In C. J. Campbell, A. Fuentes, K. C. Mackinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 155–188). Oxford: Oxford University Press.Google Scholar
  35. Dolhinow, P. J. (1972). The north Indian langur. In P. J. Dolhinow (Ed.), Primate patterns (pp. 181–238). New York: Holt, Rinehart and Winston.Google Scholar
  36. Dunbar, R. I. M. (1987). Habitat quality, population dynamics, and group composition in a colobus monkey (Colobus guereza). International Journal of Primatology, 8, 299–329.CrossRefGoogle Scholar
  37. Dunbar, R. I. M. (1988). Primate social systems. London: Croom Helm.CrossRefGoogle Scholar
  38. Ehlers Smith, D. A., & Ehlers Smith, Y. C. (2013). Population density of red langurs in Sabangau tropical peat-swamp forest, Central Kalimantan, Indonesia. American Journal of Primatology, 75, 837–847.PubMedCrossRefGoogle Scholar
  39. Ehlers Smith, D. A., Husson, S. J., Ehlers Smith, Y. C., & Harrison, M. E. (2013). Feeding ecology of red langurs in Sabangau tropical peat-swamp forest, Indonesian Borneo: Extreme granivory in a non-masting forest. American Journal of Primatology, 75, 848–859.PubMedCrossRefGoogle Scholar
  40. ESRI. (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.Google Scholar
  41. Estrada, A. (1984). Resource use by howler monkeys (Alouatta palliata) in the rainforest of Los Tuxtlas, Veracruz, Mexico. International Journal of Primatology, 5, 105–131.CrossRefGoogle Scholar
  42. Fashing, P. J. (2011). African colobine monkeys: Patterns of between-group interaction. In C. J. Campbell, A. Fuentes, K. C. Mackinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 203–229). Oxford: Oxford University Press.Google Scholar
  43. Fashing, P. J., Mulindahabi, F., Gakima, J. B., Masozera, M., Mununura, I., Plumptre, A. J., & Nguyen, N. (2007). Activity and ranging patterns of Angolan colobus (Colobus angolensis ruwenzorii) in Nyungwe Forest, Rwanda: Possible costs of large group size. International Journal of Primatology, 28, 529–550.CrossRefGoogle Scholar
  44. Fimbel, C., Vedder, A., Dierenfeld, E., & Mulindahabi, F. (2001). An ecological basisfor large group size in Colobus angolensis in the Nyungwe Forest, Rwanda. African Journal of Ecology, 39, 83–92.Google Scholar
  45. Fleury, M. C., & Gautier-Hion, A. (1999). Seminomadic ranging in a population of black colobus (Colobus satanas) in Gabon and its ecological correlates. International Journal of Primatology, 20, 491–509.CrossRefGoogle Scholar
  46. Fuentes, A. (1994). The socioecology of the Mentawai Island langur. Ph.D. thesis, University of California, Berkeley.Google Scholar
  47. Gitzen, R. A., & Millspaugh, J. J. (2003). Comparison of least-squares cross-validation bandwidth options for kernel home-range estimation. Wildlife Society Bulletin, 31, 823–831.Google Scholar
  48. Gitzen, R. A., Millspaugh, J. J., & Kernohan, B. J. (2006). Bandwidth selection for fixed-kernel analysis of animal utilization distributions. The Journal of Wildlife Management, 70, 1334–1344.CrossRefGoogle Scholar
  49. Harestad, A. S., & Bunnel, F. L. (1979). Home range and body weight: A reevaluation. Ecology, 60, 389–402.CrossRefGoogle Scholar
  50. Harrison, M. E., Vogel, E. R., Morrogh-Bernard, H., & van Noordwijk, M. A. (2009). Methods for calculating activity budgets compared: A case study using orangutans. American Journal of Primatology, 71, 353–358.PubMedCrossRefGoogle Scholar
  51. Haskell, J. P., Ritchie, M. E., & Olff, H. (2002). Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature, 148, 527–530.CrossRefGoogle Scholar
  52. Horner, M. A., & Powell, R. A. (1990). Internal structure of home range of black bears: An analyses of home range overlap. Journal of Mammalogy, 71, 402–410.CrossRefGoogle Scholar
  53. Huang, C., Wei, F., Li, M., & Sun, R. (2003). Sleeping cave selection, activity pattern and time budget of white-headed langurs. International Journal of Primatology, 24, 813–824.CrossRefGoogle Scholar
  54. Janson, C. H. (1992). Evolutionary ecology of primate social structure. In E. A. Smith & B. Winterhalder (Eds.), Evolutionary ecology and human behavior (pp. 95–130). New York: Aldine de Gruyter.Google Scholar
  55. Jolly, A. (1985). Evolution of primate behavior. New York: Macmillan.Google Scholar
  56. Kay, R. N. B., & Davies, A. G. (1994). Digestive physiology. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 229–250). Cambridge: Cambridge University Press.Google Scholar
  57. Kernohan, B. J., Gitzen, R. A., & Millspaugh, J. J. (2001). Analysis of animal space use and movements. In J. J. Millspaugh & J. M. Marzluff (Eds.), Radio tracking and animal populations (pp. 125–166). San Diego: Academic Press.CrossRefGoogle Scholar
  58. Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell, M. S., Gaillard, J. M., & Moorcroft, P. R. (2010). The home-range concept: Are traditional estimators still relevant with modern telemetry technology? Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2221–2231.CrossRefGoogle Scholar
  59. Kinnaird, M. F., & O’Brien, T. G. (2000). Comparative movement patterns of two semiterrestrial cercopithecine primates: The Tana River crested mangabey and the Sulawesicrested black macaque. In S. Boinski & P. A. Garber (Eds.), On the move: How and why animals travel in groups (pp. 327–350). Chicago: University of Chicago Press.Google Scholar
  60. Kirkpatrick, R. C. (2011). The Asian colobines: Diversity among leaf-eating monkeys. In C. J. Campbell, A. Fuentes, K. C. Mackinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 189–202). Oxford: Oxford University Press.Google Scholar
  61. Kirkpatrick, R. C., Gu, H. J., & Zhou, X. P. (1999). A preliminary report on the ecology of Rhinopithecus roxellana at Baihe Nature Reserve. Folia Primatologica, 70, 117–120.CrossRefGoogle Scholar
  62. Kirkpatrick, R. C., Long, Y. C., Zhong, T., & Xiao, L. (1998). Social organization and range use in the Yunnan snub-nosed langur, Rhinopithecus bieti. International Journal of Primatology, 17, 13–51.CrossRefGoogle Scholar
  63. Korstjens, A. H. (2001). The mob, the secret sorority, and the phantoms: An analysis of the socio-ecological strategies of the three colobines at Tai. Ph.D. thesis, University of Utrecht.Google Scholar
  64. Li, B., Chen, C., Ji, W., & Ren, B. (2000). Seasonal home range changes of the Sichuan snub-nosed monkey (Rhinopithecus roxellana) in the Qinling Mountains of China. Folia Primatologica, 71, 375–386.CrossRefGoogle Scholar
  65. Li, Y., Jiang, Z., Li, C., & Grueter, C. C. (2010). Effects of seasonal folivory and frugivory on ranging patterns in Rhinopithecus roxellana. International Journal of Primatology, 31, 609–626.CrossRefGoogle Scholar
  66. Li, Y. M. (2001). The diet of the Sichuan snub-nosed monkey (Pygatrix roxellana) in Shennongjia Nature Reserve, China. Folia Primatologica, 72, 40–43.CrossRefGoogle Scholar
  67. Li, Y. M., Liao, M. R., Yu, J., & Yang, J. Y. (2005). Effects of annual change in group size, human disturbances and weather on daily travel distance of a group in Sichuan snub-nosed monkey (Rhinopithecus roxellana) in Shennongjia Nature Reserve, China. Biodiversity Science, 13, 432–438.CrossRefGoogle Scholar
  68. Marshall, A. (2010). Effects of habitat quality on primate populations in Kalimantan: Gibbons and leaf monkeys as case studies. In J. Supriatna & S. Gursky-Doyen (Eds.), Indonesian primates. Developments in Primatology: Progress and Prospects (pp. 157–177). New York: Springer Science+Business Media.Google Scholar
  69. Matsuda, I., Tuuga, A., & Higashi, S. (2009). The feeding ecology and activity budget of proboscis monkeys. American Journal of Primatology, 71, 478–492.PubMedCrossRefGoogle Scholar
  70. Miettinen, J., Shi, C., & Liew, S. (2011). Two decades of destruction in Southeast Asia’s peat-swamp forests. Frontiers in the Ecology and Environment, 10, 124–128.CrossRefGoogle Scholar
  71. Mitchell, A. H. (1994). Ecology of Hose’s langur, Presbytis hosei, in mixed, logged and unlogged dipterocarp forest of northeast Borneo. Ph.D thesis, Yale University Press.Google Scholar
  72. Newton, P. N. (1992). Feeding and ranging patterns of forest Hanuman langurs (Presbytis entellus). International Journal of Primatology, 13, 245–285.CrossRefGoogle Scholar
  73. Newton, P. N., & Dunbar, R. I. M. (1994). Colobine monkey society. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 311–346). Cambridge: Cambridge University Press.Google Scholar
  74. Nkurunungi, J., & Stanford, C. (2006). Preliminary GIS analysis of range use by sympatric mountain gorillas and chimpanzees in Bwindi Impenetrable National Park, Uganda. In N. E. Fisher, H. Notman, J. D. Patterson, & D. Reynolds (Eds.), Primates of western Uganda (pp. 193–205). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  75. Oates, J. F., Waterman, P. G., & Choo, G. M. (1980). Food selection by the south Indian leaf-monkey, Presbytis johnii, in relation to leaf chemistry. Oecologia, 45, 45–56.CrossRefGoogle Scholar
  76. Page, S. E., Rieley, J. O., Shotyk, O. W., & Weiss, D. (1999). Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354, 1885–1897.PubMedCrossRefGoogle Scholar
  77. Poirier, F. E. (1970). The Nilgiri langur (Presbytis johnii) of South India. In R. A. Rosenblum (Ed.), Primate behavior: Developments in field and laboratory Research (Vol. 1, pp. 251–383). New York: Academic Press.Google Scholar
  78. Powell, R. A. (2000). Animal home ranges and territories and home range estimators. In L. Boitani & T. H. Fuller (Eds.), Research techniques in animal ecology: Controversies and consequences (pp. 65–110). New York: Columbia University Press.Google Scholar
  79. Ren, B., Li, M., Long, Y., & Wei, F. (2009). Influence of day length, ambient temperature, and seasonality on daily travel distance in the Yunnan snub-nosed monkey at Jinsichang, Yunnan, China. American Journal of Primatology, 71, 233–241.CrossRefGoogle Scholar
  80. Richard, A. F. (1985). Primates in nature. New York: W. H. Freeman and Co.Google Scholar
  81. Roos, C., Zinner, D., Kubatko, L. S., Schwarz, C., Yang, M., et al. (2011). Nuclear versus mitochondrial DNA: Evidence for hybridization in colobine monkeys. BMC Evolutionary Biology, 11, 77.PubMedCrossRefGoogle Scholar
  82. Ruhiyat, Y. (1983). Socio-ecological study of Presbytis aygula in west Java. Primates, 24, 344–359.CrossRefGoogle Scholar
  83. Seaman, D. E., Millspaugh, J. J., Kernohan, B. J., Brundige, G. C., Raedeke, K. J., & Gitzen, R. A. (1999). Effects of sample size on kernel home range estimates. Journal of Wildlife Management, 63, 739–747.CrossRefGoogle Scholar
  84. Sicotte, P., & MacIntosh, A. J. (2004). Inter-group encounters and male incursions in Colobus vellerosus in central Ghana. Behaviour, 141, 533–553.CrossRefGoogle Scholar
  85. Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.Google Scholar
  86. Singleton, I., & Van Schaik, C. (2001). Orangutan home range size and its determinants in a Sumatran swamp forest. International Journal of Primatology, 22, 877–911.CrossRefGoogle Scholar
  87. Stanford, C. B. (1991). The capped langur in Bangladesh: Behavioral ecology and reproductive tactics. New York: Karger.Google Scholar
  88. Steenbeck, R., & van Schaik, C. P. (2001). Competition and group size in Thomas’s langurs (Presbytis thomasi): The folivore paradox revisited. Behavioral Ecology and Sociobiology, 49, 100–110.CrossRefGoogle Scholar
  89. Stigg, H., & Stolba, A. (1981). Home range and daily march in a Hamadryas baboon troop. Folia Primatologica, 36, 40–75.CrossRefGoogle Scholar
  90. Suarez, S. A. (2006). Diet and travel costs for spider monkeys in a nonseasonal, hyperdiverse environment. International Journal of Primatology, 27, 411–436.CrossRefGoogle Scholar
  91. Supriatna, J., Manullang, B. O., & Soekara, E. (1986). Group composition, home Range, and diet of the maroon leaf monkey (Presbytis rubicunda) at Tanjung Puting Reserve, Central Kalimantan, Indonesia. Primates, 27, 185–190.CrossRefGoogle Scholar
  92. van Schaik, C. P., & Pfannes, K. (2005). Tropical climates and phenology: A primate perspective. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates: Studies of living and extinct human and non-human primates (pp. 23–54). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  93. van Winkle, W. (1975). Comparison of several probabilistic home-range models. Journal of Wildlife Management, 39, 118–123.CrossRefGoogle Scholar
  94. Wallace, R. B. (2006). Seasonal variations in black-faced black spider monkey (Ateles chamek) habitat use and ranging behavior in a southern Amazonian tropical forest. American Journal of Primatology, 68, 313–332.PubMedCrossRefGoogle Scholar
  95. Watanabe, K. (1981). Variation in group composition and population density of the two sympatric Mentawaian leaf-monkeys. Primates, 22, 145–160.CrossRefGoogle Scholar
  96. Watts, D. P. (1998). Long-term habitat use by mountain gorillas (Gorilla gorilla beringei). 1. Consistency, variation, and home range size and stability. International Journal of Primatology, 19, 651–680.CrossRefGoogle Scholar
  97. Worton, B. J. (1987). A review of models of home range for animal movement. Ecological Modelling, 38, 277–298.CrossRefGoogle Scholar
  98. Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70, 164–168.CrossRefGoogle Scholar
  99. Yeager, C. P. (1990). Proboscis monkey (Nasalis larvatus) social organization: Group structure. American Journal of Primatology, 20, 95–106.CrossRefGoogle Scholar
  100. Yeager, C. P., & Kirkpatrick, R. C. (1998). Asian colobine social structure: Ecological and evolutionary constraints. Primates, 39, 147–155.CrossRefGoogle Scholar
  101. Yeager, C. P., & Kool, K. (2000). The behavioral ecology of Asian colobines. In P. F. Whitehead & C. J. Jolly (Eds.), Old World monkeys (pp. 496–521). Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David A. Ehlers Smith
    • 1
    • 2
    • 3
  • Yvette C. Ehlers Smith
    • 1
  • Susan M. Cheyne
    • 1
    • 4
  1. 1.Orangutan Tropical Peatland Project, Centre for the International Cooperation in Sustainable Management of Tropical PeatlandsUniversitas Palangka RayaPalangka RayaIndonesia
  2. 2.Oxford Brookes UniversityOxfordUK
  3. 3.NorthamptonshireUK
  4. 4.Wildlife Conservation Research Unit (WildCRU), Department of ZoologyUniversity of Oxford, Recanati-Kaplan CentreOxfordshireUK

Personalised recommendations