International Journal of Primatology

, Volume 34, Issue 5, pp 1020–1031 | Cite as

Physiological and Behavioral Effects of Capture Darting on Red Colobus Monkeys (Procolobus rufomitratus) with a Comparison to Chimpanzee (Pan troglodytes) Predation

  • Michael D. Wasserman
  • Colin A. Chapman
  • Katharine Milton
  • Tony L. Goldberg
  • Toni E. Ziegler


Understanding how human activities affect wild primates is critical to the design of effective conservation strategies. Despite this need, few studies have examined the physiological and behavioral effects of field research methods in the wild. Here, we examine how the stress response, i.e., fecal cortisol, and behavior of Ugandan red colobus monkeys (Procolobus rufomitratus) in Kibale National Park are affected by chemical immobilization and collaring, i.e., capture. We compare this anthropogenic stressor to a naturally occurring stressor: a chimpanzee (Pan troglodytes) predation attack. Two adult males had peak cortisol levels of 283 and 284 ng/g 2–3 d after capture, which were 190% and 182% above their baseline levels, i.e., the first sample taken immediately after capture, but these peak levels did not remain elevated. Using long-term data, i.e., 11 mo of data, we found no difference in fecal cortisol levels between 10 darted and collared individuals and 14 individuals living in the same social group that were not darted or collared. For the chimpanzee attack, peak fecal cortisol levels (147–211% above baseline) were recorded 1–4 d after the attack, but these levels also did not remain elevated for long. These data show that darting and collaring and a chimpanzee predation attempt caused an acute stress response, but neither leads to sustained elevated cortisol levels. Thus, in situations in which research contributes significantly to the conservation of primates and cannot be conducted noninvasively, capture darting appears to be a useful technique with minimal long-term effects as long as injury and mortality are avoided. However, we encourage researchers to make similar physiological and behavioral comparisons in other field studies using similar techniques to provide a better understanding of the effects of research practices on the stress physiology and social behavior of wild primates.


Chemical immobilization Environmental endocrinology Fecal cortisol Predator effects Primate conservation Research effects 


  1. Animal Behaviour. (2012). Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour, 83, 301–309.CrossRefGoogle Scholar
  2. Bentson, K. L., Capitanio, J. P., & Mendoza, S. P. (2003). Cortisol responses to immobilization with telazol or ketamine in baboons (Papio cynocephalus/anubis) and rhesus macaques (macaca mulatta). Journal of Medical Primatology, 32, 148–160.PubMedCrossRefGoogle Scholar
  3. Champagne, C. D., Houser, D. S., Costa, D. P., & Crocker, D. E. (2012). The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in northern elephant seals. Plos One, 7, e38442.Google Scholar
  4. Chapman, C. A., Saj, T. L., & Snaith, T. V. (2007). Temporal dynamics of nutrition, parasitism, and stress in colobus monkeys: Implications for population regulation and conservation. American Journal of Physical Anthropology, 134, 240–250.PubMedCrossRefGoogle Scholar
  5. Chapman, C. A., Wasserman, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J., Saj, T. L., & Ziegler, T. E. (2006). Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131, 525–534.PubMedCrossRefGoogle Scholar
  6. Clapper, J. A. (2008). Effects of two different anaesthetics on serum concentrations of cortisol and luteinizing hormone in barrows and gilts. Laboratory Animals, 42, 83–91.PubMedCrossRefGoogle Scholar
  7. Creel, S., Creel, N. M., & Monfort, S. L. (1997). Radiocollaring and stress hormones in African wild dogs. Conservation Biology, 11, 544–548.CrossRefGoogle Scholar
  8. Crofoot, M. C., Norton, T. M., Lessnau, R. G., Viner, T. C., Chen, T. C., Mazzaro, L. M., & Yabsley, M. J. (2009). Field anesthesia and health assessment of free-ranging Cebus capucinus in Panama. International Journal of Primatology, 30, 125–141.CrossRefGoogle Scholar
  9. Fedigan, L. M. (2010). Ethical issues faced by field primatologists: Asking the relevant questions. American Journal of Primatology, 72, 754–771.PubMedCrossRefGoogle Scholar
  10. Fernandez-Duque, E., & Rotundo, M. (2003). Field methods for capturing and marking azarai night monkeys. International Journal of Primatology, 24, 1113–1120.CrossRefGoogle Scholar
  11. Fourrier, M., Sussman, R. W., Kippen, R., & Childs, G. (2008). Demographic modeling of a predator–prey system and its implication for the gombe population of Procolobus rufomitratus tephrosceles. International Journal of Primatology, 29, 497–508.CrossRefGoogle Scholar
  12. Glander, K. E., Fedigan, L. M., Fedigan, L., & Chapman, C. (1991). Field methods for capture and measurement of 3 monkey species in Costa Rica. Folia Primatologica, 57, 70–82.CrossRefGoogle Scholar
  13. Glenn, M. E., & Bensen, K. J. (1998). Capture techniques and morphological measurements of the mona monkey (Cercopithecus mona) on the island of grenada, west indies. American Journal of Physical Anthropology, 105, 481–491.PubMedCrossRefGoogle Scholar
  14. Goldberg, T. L., Sintasath, D. M., Chapman, C. A., Cameron, K. M., Karesh, W. B., Tang, S., Wolfe, N. D., Rwego, I. B., Ting, N., & Switzer, W. M. (2009). Coinfection of ugandan red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) with novel, divergent delta-, lenti-, and spumaretroviruses. Journal of Virology, 83, 11318–11329.PubMedCrossRefGoogle Scholar
  15. Jones, W. T., & Bush, B. B. (1988). Darting and marking techniques for an arboreal forest monkey, Cercopithecus ascanius. American Journal of Primatology, 14, 83–89.CrossRefGoogle Scholar
  16. Juarez, C. P., Rotundo, M. A., Berg, W., & Fernandez-Duque, E. (2011). Costs and benefits of radio-collaring on the behavior, demography, and conservation of owl monkeys (Aotus azarai) in formosa, argentina. International Journal of Primatology, 32, 69–82.CrossRefGoogle Scholar
  17. Karesh, W. B., Wallace, R. B., Painter, R. L. E., Rumiz, D., Braselton, W. E., Dierenfeld, E. S., & Puche, H. (1998). Immobilization and health assessment of free-ranging black spider monkeys (Ateles paniscus chamek). American Journal of Primatology, 44, 107–123.PubMedCrossRefGoogle Scholar
  18. Milton, K., Lozier, J. D., & Lacey, E. A. (2009). Genetic structure of an isolated population of mantled howler monkeys (Alouatta palliata) on barro colorado island, panama. Conservation Genetics, 10, 347–358.CrossRefGoogle Scholar
  19. Palme, R., Fischer, P., Schildorfer, H., & Ismail, M. N. (1996). Excretion of infused C-14-steroid hormones via faeces and urine in domestic livestock. Animal Reproduction Science, 43, 43–63.CrossRefGoogle Scholar
  20. Sapolsky, R. M. (1982). The endocrine stress-response and social-status in the wild baboon. Hormones and Behavior, 16, 279–292.PubMedCrossRefGoogle Scholar
  21. Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science, 308, 648–652.PubMedCrossRefGoogle Scholar
  22. Sapolsky, R. M., & Share, L. J. (1998). Darting terrestrial primates in the wild: A primer. American Journal of Primatology, 44, 155–167.PubMedCrossRefGoogle Scholar
  23. Snaith, T. V., Chapman, C. A., Rothman, J. M., & Wasserman, M. D. (2008). Bigger groups have fewer parasites and similar cortisol levels: A multi-group analysis in red colobus monkeys. American Journal of Primatology, 70, 1072–1080.PubMedCrossRefGoogle Scholar
  24. Stanford, C. B. (1995). The influence of chimpanzee predation on group-size and antipredator behavior in red colobus monkeys. Animal Behaviour, 49, 577–587.Google Scholar
  25. Struhsaker, T. T. (2005). Conservation of red colobus and their habitats. International Journal of Primatology, 26, 525–538.CrossRefGoogle Scholar
  26. Struhsaker, T. T. (2008). Procolobus rufomitratus ssp. Tephrosceles. IUCN Red List of Threatened Species Version 2011.2. Available at:
  27. Teelen, S. (2007). Influence of chimpanzee predation on associations between red colobus and red-tailed monkeys at Ngogo, Kibale National Park, Uganda. International Journal of Primatology, 28, 593–606.CrossRefGoogle Scholar
  28. Teelen, S. (2008). Influence of chimpanzee predation on the red colobus population at Ngogo, Kibale National Park, Uganda. Primates, 49, 41–49.PubMedCrossRefGoogle Scholar
  29. Whitten, P. L., Brockman, D. K., & Stavisky, R. C. (1998a). Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Yearbook of Physical Anthropology, 1998(41), 1–23.CrossRefGoogle Scholar
  30. Whitten, P. L., Stavisky, R., Aureli, F., & Russell, E. (1998b). Response of fecal cortisol to stress in captive chimpanzees (Pan troglodytes). American Journal of Primatology, 44, 57–69.PubMedCrossRefGoogle Scholar
  31. Ziegler, T. E., Scheffler, G., & Snowdon, C. T. (1995). The relationship of cortisol levels to social environment and reproductive functioning in female cotton-top tamarins, Saguinus oedipus. Hormones and Behavior, 29, 407–424.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael D. Wasserman
    • 1
    • 2
  • Colin A. Chapman
    • 2
    • 3
  • Katharine Milton
    • 1
  • Tony L. Goldberg
    • 4
  • Toni E. Ziegler
    • 5
  1. 1.Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Department of AnthropologyMcGill UniversityMontrealCanada
  3. 3.Wildlife Conservation SocietyBronxUSA
  4. 4.Department of Pathobiological Sciences, School of Veterinary Medicine, and Wisconsin National Primate Research CenterUniversity of Wisconsin–MadisonMadisonUSA
  5. 5.Wisconsin National Primate Research CenterUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations