Advertisement

International Journal of Primatology

, Volume 34, Issue 5, pp 899–916 | Cite as

A Potential Distribution Model and Conservation Plan for the Critically Endangered Ecuadorian Capuchin, Cebus albifrons aequatorialis

  • Fernando A. CamposEmail author
  • Katharine M. Jack
Article

Abstract

Conservation actions that effectively and efficiently target single, highly threatened species require current data on the species’ geographic distribution and environmental associations. The Ecuadorian capuchin (Cebus albifrons aequatorialis) is a critically endangered primate found only in the fragmented forests of western Ecuador and northern Peru, which are among the world’s most severely threatened ecosystems. We use the MAXENT species distribution modeling method to model the potential distribution and environmental associations of Cebus albifrons aequatorialis, using all known presence localities recorded within the last 2 decades as well as 13 climate, topography, vegetation, and land-use data sets covering the entire geographic range of the subspecies. The environmental conditions that our model predicted to be ideal for supporting Cebus albifrons aequatorialis included ≥20% tree cover, mild temperature seasonality, annual precipitation <2000 mm, and low human population density. Our model identified 5028 km2 of suitable habitat remaining, although many of these forest fragments are unprotected and are unlikely to support extant populations. Using the median population density across all sites for which data are available, we estimate the total carrying capacity of the remaining habitat to be 12,500 total individuals. The true number of remaining individuals is likely to be considerably lower due to anthropogenic factors. We highlight four critical regions of high predicted suitability in western Ecuador and northern Peru on which immediate conservation actions should focus, and we lay out clear priorities to guide conservation actions for ensuring the long-term survival of this gravely threatened and little known primate.

Keywords

Cebus albifrons aequatorialis Conservation plan Distribution model Ecuadorian capuchin MAXENT Northern Peru Western Ecuador 

Notes

Acknowledgments

F. A. Campos was supported by Alberta Innovates–Technology Futures and the University of Calgary. This research was made possible through the following research grants awarded to K. M. Jack: National Geographic Society Conservation Trust; Margot Marsh Biodiversity Foundation; University Research Council at Appalachian State University; and the Committee on Research, George Lurcy Fund, and the Stone Center for Latin American Studies at Tulane University. We thank Dr. Luis Albuja and Rodrigo Acros for sharing locality data. We are grateful to the landowners and reserve personnel that allowed us to carry out field work, with special thanks to Eric Von Horstman, Eudaldo Loor, and the Cevallos-Martinez family. We also thank Zdanna King, Andrew Childers, Dale Morris, Sasha Gilmore, Robert Lee, Kate Laakso, Marcelo Luque, Patricia Intriago Alvaro, Vincente Salvo, Melina Costantino, Rafael Ángel, Alfonso Arguero Santos, and numerous field school students from Appalachian State University for logistical support. We also thank our anonymous reviewers for numerous helpful comments that improved the manuscript.

Supplementary material

10764_2013_9704_MOESM1_ESM.pdf (564 kb)
ESM 1 (PDF 563 kb)

References

  1. Albuja, V. L. (2002). Mamíferos del Ecuador. In G. Ceballos & J. A. Simonetti (Eds.), Diversidad y Conservación de los Mamiferos Neotropicales (pp. 271–327). Mexico City: CONABIO-UNAM.Google Scholar
  2. Albuja, V. L., & Arcos, D. R. (2007). Evaluación de las poblaciones de Cebus albifrons cf. aequatorialis en los bosques suroccidentales Ecuatorianos. Politécnica, 27(4) Biología 7, 58–67.Google Scholar
  3. Allen, J. A. (1914). New South American monkeys. Bulletin of the American Museum of Natural History, 33, 647–655.Google Scholar
  4. Bartholome, E., & Belward, A. S. (2005). GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 1959–1977.CrossRefGoogle Scholar
  5. Best, B. J., & Kessler, M. (1995). Biodiversity and conservation in Tumbesian Ecuador and Peru. Cambridge, U.K.: BirdLife International.Google Scholar
  6. Bierregaard, R. O. (2001). Lessons from Amazonia: The ecology and conservation of a fragmented forest. New Haven, CT: Yale University Press.Google Scholar
  7. Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Rylands, A. B., Konstant, W. R., et al. (2002). Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology, 16(4), 909–923.Google Scholar
  8. Caro, T. M., & O'Doherty, G. (1999). On the use of surrogate species in conservation biology. Conservation Biology, 13(4), 805–814.CrossRefGoogle Scholar
  9. Charlat, S., Thatcher, O. R., Hartmann, N., Patel, Y. G., Saillan, M., & Vooren, E. (2000). Survey of Alouatta palliata at the Bilsa Biological Reserve, north-west Ecuador. Neotropical Primates, 8(1), 40–44.Google Scholar
  10. Cornejo, F., & de la Torre, S. (2008). Cebus albifrons ssp. aequatorialis. Retrieved from www.iucnredlist.org (Accessed February 28, 2013).
  11. Dodson, C. H., & Gentry, A. H. (1991). Biological extinction in western Ecuador. Annals of the Missouri Botanical Garden, 78(2), 273–295.CrossRefGoogle Scholar
  12. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.Google Scholar
  13. Encarnacion, F., & Cook, A. G. (1998). Primates of the tropical forest of the Pacific coast of Peru: The Tumbes Reserved Zone. Primate Conservation, 18, 15–20.Google Scholar
  14. Eva, H. D., de Miranda, E. E., Di Bella, C. M., Gond, V., Huber, O., Sgrenzaroli, M., et al. (2002). A vegetation map of South America. Luxembourg: EUR 20159 EN, European Commission.Google Scholar
  15. Fritz, S., Bartholomé, E., Belward, A., Hartley, A., Stibig, H. J., Eva, H., et al. (2003). Harmonisation, mosaicing and production of the Global Land Cover 2000 database (beta version). European Commission – Joint Research Centre.Google Scholar
  16. Game, E. T., Kareiva, P., & Possingham, H. P. (2013). Six common mistakes in conservation priority setting. Conservation Biology, 27(3), 480–485.PubMedCrossRefGoogle Scholar
  17. Gavilanez-Endara, M. M. (2006). Demografía, actividad y preferencia de hábitat de tres especies de primates (Alouatta palliata, Ateles fusciceps y Cebus capucinus) en un bosque nublado del Noroccidente Ecuatoriano. Pontifica Universidad Católica del Ecuador, Quito, Ecuador.Google Scholar
  18. GLC (2003). Global Land Cover 2000 database. European Commission, Joint Research Centre, 2003. Retrieved from http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php
  19. Hansen, M., DeFries, R., Townshend, J. R., Carroll, M., Dimiceli, C., & Sohlberg, R. (2007). Vegetation continuous fields MOD44B, 2001 percent tree cover, Collection 4. College Park, Maryland: University of Maryland.Google Scholar
  20. Hansen, M. C., Defries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21(6–7), 1331–1364.CrossRefGoogle Scholar
  21. Harris, J. B. C., Tirira, D. G., Álvarez L, P. J., & Mendoza I, V. (2008). Altitudinal Range Extension for Cebus albifrons (Primates: Cebidae) in Southern Ecuador. Neotropical Primates, 15(1), 22–24.Google Scholar
  22. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785.CrossRefGoogle Scholar
  23. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  24. Hores, R. M. (2006). Census of nonhuman primate populations of Comuna El Pital, in south central Ecuador (Cebus albifrons, Alouatta palliata). MA Thesis, Florida Atlantic UniversityGoogle Scholar
  25. Jack, K. M., & Campos, F. A. (2012). Distribution, abundance, and spatial ecology of the critically endangered Ecuadorian capuchin (Cebus albifrons aequatorialis). Tropical Conservation Science, 5(2), 173–191.Google Scholar
  26. Jimenez-Valverde, A., & Lobo, J. M. (2007). Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica-International Journal of Ecology, 31(3), 361–369.CrossRefGoogle Scholar
  27. Kleiman, D. G., & Mallinson, J. J. C. (1998). Recovery and management committees for lion tamarins: Partnerships in conservation planning and implementation. Conservation Biology, 12(1), 27–38.CrossRefGoogle Scholar
  28. Lambeck, R. J. (1997). Focal species: A multi-species umbrella for nature conservation. Conservation Biology, 11(4), 849–856.CrossRefGoogle Scholar
  29. Liknes, G. C., Perry, C. H., & Meneguzzo, D. M. (2010). Assessing tree cover in agricultural landscapes using high-resolution aerial imagery. Journal of Terrestrial Observation, 2(1), Article 5.Google Scholar
  30. Lindenmayer, D. B., Manning, A. D., Smith, P. L., Possingham, H. P., Fischer, J., Oliver, I., & McCarthy, M. A. (2002). The focal-species approach and landscape restoration: A critique. Conservation Biology, 16(2), 338–345.Google Scholar
  31. Liu, C. R., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393.CrossRefGoogle Scholar
  32. Loiselle, B. A., Howell, C. A., Graham, C. H., Goerck, J. M., Brooks, T., Smith, K. G., & Williams, P. H. (2003). Avoiding pitfalls of using species distribution models in conservation planning. Conservation Biology, 17(6), 1591–1600.Google Scholar
  33. Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence-absence models in ecology: The need to account for prevalence. Journal of Applied Ecology, 38(5), 921–931.CrossRefGoogle Scholar
  34. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.PubMedCrossRefGoogle Scholar
  35. Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. Ieee Transactions on Geoscience and Remote Sensing, 33(2), 481–486.CrossRefGoogle Scholar
  36. Parker, T. A., & Carr, J. L., Eds. (1992). Status of forest remnants in the Cordillera de la Costa and adjacent areas of southwestern Ecuador: Conservation International, RAP Working Papers 2.Google Scholar
  37. Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117.CrossRefGoogle Scholar
  38. Peres, C. A. (2001). Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology, 15(6), 1490–1505.CrossRefGoogle Scholar
  39. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.CrossRefGoogle Scholar
  40. Portillo-Quintero, C. A., & Sánchez-Azofeifa, G. A. (2010). Extent and conservation of tropical dry forests in the Americas. Biological Conservation, 143(1), 144–155.CrossRefGoogle Scholar
  41. Robinson, T. P., van Klinken, R. D., & Metternicht, G. (2010). Comparison of alternative strategies for invasive species distribution modeling. Ecological Modelling, 221(19), 2261–2269.CrossRefGoogle Scholar
  42. Tirira, D. (Ed.). (2011). Libro Rojo de los mamíferos del Ecuador (2nd ed.). Quito: Fundación Mamíferos y Conservación. Pontificia Universidad Católica del Ecuador & Ministerio del Ambiente del Ecuador.Google Scholar
  43. Vidal-García, F., & Serio-Silva, J. (2011). Potential distribution of Mexican primates: Modeling the ecological niche with the maximum entropy algorithm. Primates, 52(3), 261–270.PubMedCrossRefGoogle Scholar
  44. Wilson, K. A., Carwardine, J., & Possingham, H. P. (2009). Setting conservation priorities. Annals of the New York Academy of Sciences, 1162(1), 237–264.PubMedCrossRefGoogle Scholar
  45. Wilson, K. A., McBride, M. F., Bode, M., & Possingham, H. P. (2006). Prioritizing global conservation efforts. Nature, 440(7082), 337–340.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of CalgaryAlbertaCanada
  2. 2.Department of Integrated BiosciencesUniversity of TokyoKashiwaJapan
  3. 3.Department of AnthropologyTulane UniversityNew OrleansUSA

Personalised recommendations