International Journal of Primatology

, Volume 34, Issue 1, pp 86–98 | Cite as

Subspecies of the Central American Squirrel Monkey (Saimiri oerstedii) as Units for Conservation

  • Mary E. Blair
  • Gustavo A. Gutierrez-Espeleta
  • Don J. Melnick


The accurate diagnosis of conservation units now typically includes recognition of genetic diversity and unique evolutionary lineages and is necessary to inform the conservation management of endangered species. We evaluated whether the two currently recognized subspecies of the endangered Central American squirrel monkey (Saimiri oerstedii) in Costa Rica are evolutionarily significant units (ESUs) that should be managed separately in conservation efforts. We used previously published sequences of 50 individuals of Saimiri oerstedii for 880 bp of the mtDNA d-loop and genotypes of 244 individuals for 16 microsatellites and conducted novel analyses to characterize genetic differentiation between subspecies of Saimiri oerstedii. We measured sequence differentiation and inferred an intraspecific molecular phylogeny and a haplotype network, and found consistent results supporting statistically significant divergence and reciprocal monophyly between subspecies. A population aggregation analysis also supported Saimiri oerstedii citrinellus and S. o. oerstedii as diagnosably distinct units. These results confirm previous genetic studies with smaller sample sizes and are consistent with other factors including differences in pelage and morphology and divergence at nuclear markers. Conservation managers should manage these subspecies separately to prevent the loss of genetic diversity via artificially induced outbreeding. High levels of genetic diversity may buffer populations against outside extinction pressures, to which Saimiri oerstedii are vulnerable because of their dwindling habitat and small population size.


Cebidae Evolutionarily significant units (ESUs) Microsatellite mtDNA control region Platyrrhini 



We thank two anonymous reviewers and also M. Losilla for comments that greatly improved this manuscript. We thank the other members of M. Blair’s dissertation advisory committee: A. Di Fiore, M. Cords, R. DeSalle, and T. Disotell. We also thank collaborators, nongovernmental organizations, and representatives from the Ministry of Energy and the Environment and local governments in Costa Rica including G. Wong, M. Schulte, F. Villanea, J. Aguero, M. Cook, L. Leon, J. Bustamante, O. Masis, L. Rubí, and H. Abarca. Field assistants F. Rutka, D. Lake, R. Leon, and W. Chacon helped collect samples in Costa Rica, and we thank K. Desvenain, the Rubí-Brenes family, Hotel Rancho Casa Grande, Hotel Byblos, Hotel Tulemar, Hotel La Posada, and Sky Mountain Canopy Tour for allowing us to search for squirrel monkeys on their property. K. Chiou, M. Montague, A. Morales-Jimenez, C. Bergey, A. Burrell, J. Corush, L. Pozzi, and S. Pickett provided invaluable help in the laboratory. We thank M. Brown, L. Douglas, K. Schmidt, C. Schmitt, J. Hodgson, Z. Liu, K. Guschanski, O. Pineda, A. Goncalves da Silva, J. Munshi-South, and R. Raaum for invaluable advice on data analyses. This research was generously funded by the National Science Foundation (NSF) Award No. BCS-0847912, the American Association of University Women, the Margot Marsh Biodiversity Foundation, Columbia University, the International Primatological Society, the American Society of Primatologists, and the Northwest Primate Conservation Society. M. Blair was supported during her graduate training by the NSF Integrative Graduate Education and Research Traineeship (IGERT) program the New York Consortium in Evolutionary Primatology (NYCEP), Award No. DGE-0333415.


  1. Arauz, J. (1993). Estado de conservación del mono tití (Saimiri oerstedii citrinellus) en su área de distribución original. Costa Rica: Universidad Nacional, Heredia, Costa Rica.Google Scholar
  2. Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.PubMedCrossRefGoogle Scholar
  3. Blair, M. E. (2011). Habitat modification and gene flow in Saimiri oerstedii: Landscape genetics, intraspecific molecular phylogenetics, and conservation. Ph.D. dissertation, New York: Columbia University.Google Scholar
  4. Blair, M. E., & Melnick, D. J. (2012a). Genetic evidence for dispersal by both sexes in the Central American squirrel monkey, Saimiri oerstedii citrinellus. American Journal of Primatology, 74, 37–47.PubMedCrossRefGoogle Scholar
  5. Blair, M. E., & Melnick, D. J. (2012b). Scale-dependent effects of a heterogeneous landscape on genetic differentiation in the Central American squirrel monkey (Saimiri oerstedii). PLoS ONE, 7, e43027.PubMedCrossRefGoogle Scholar
  6. Blair, M. E., Sterling, E. J., & Hurley, M. M. (2011). Taxonomy and conservation of Vietnam’s primates: a review. American Journal of Primatology, 73, 1093–1106.PubMedCrossRefGoogle Scholar
  7. Boinski, S. (1999). The social organizations of squirrel monkeys: implications for ecological models of social evolution. Evolutionary Anthropology, 8(3), 101–112.CrossRefGoogle Scholar
  8. Boinski, S., & Cropp, S. J. (1999). Disparate data sets resolve squirrel monkey (Saimiri) taxonomy: implications for behavioral ecology and biomedical usage. International Journal of Primatology, 20(2), 237–256.CrossRefGoogle Scholar
  9. Boinski, S., & Sirot, L. (1997). Uncertain conservation status of squirrel monkeys in Costa Rica. Folia Primatologica, 68, 181–193.CrossRefGoogle Scholar
  10. Boinski, S., Jack, K., Lamarsh, C., & Coltrane, J. A. (1998). Squirrel monkeys in Costa Rica: drifting to extinction. Oryx, 32(1), 45–58.Google Scholar
  11. Carrillo, E., Wong, G., & Saenz, J. C. (2002). Mammals of Costa Rica, 2nd ed. Santo Domingo de Heredia. Costa Rica: National Institute of Biodiversity.Google Scholar
  12. Chen, S., Su, S., Lo, C., Chen, K., Huang, T., Kuo, B., et al. (2009). PALM: A paralleled and integrated framework for phylogenetic inference with automatic likelihood model selectors. PLoS ONE, 4(12), e8116.PubMedCrossRefGoogle Scholar
  13. Chiou, K. L., Pozzi, L., Lynch Alfaro, J. W., & Di Fiore, A. (2011). Pleistocene diversification of living squirrel monkeys (Saimiri spp.) inferred from complete mitochondrial genome sequences. Molecular Phylogenetics and Evolution, 59, 736–745.PubMedCrossRefGoogle Scholar
  14. Cracraft, J. (1983). Species concepts and speciation analysis. Current Ornithology, 1, 159–187.CrossRefGoogle Scholar
  15. Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., & Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 15(7), 290–295.PubMedCrossRefGoogle Scholar
  16. Cropp, S., & Boinski, S. (2000). The Central American squirrel monkey (Saimiri oerstedii): introduced hybrid or endemic species? Molecular Phylogenetics and Evolution, 16(3), 350–365.PubMedCrossRefGoogle Scholar
  17. Daugherty, C. H., Cree, A., Hay, J. M., & Thompson, M. B. (1990). Neglected taxonomy and continuing extinctions of tuatara (Sphenodon). Nature, 347, 376–389.CrossRefGoogle Scholar
  18. Davis, J. I., & Nixon, K. C. (1992). Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology, 41(4), 421–435.Google Scholar
  19. de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.PubMedCrossRefGoogle Scholar
  20. DeSalle, R., & Amato, G. (2004). The expansion of conservation genetics. Nature Reviews Genetics, 5, 702–712.PubMedCrossRefGoogle Scholar
  21. Ford, S. (2005). The biogeographic history of Mesoamerican primates. In A. Estrada, P. A. Garber, M. Pavelka, & L. Luecke (Eds.), New perspectives in the study of Mesoamerican primates (pp. 81–114). New York: Springer.Google Scholar
  22. Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174.PubMedCrossRefGoogle Scholar
  23. Hendry, A. P., Lohmann, L. G., Conti, E., Cracraft, J., Crandall, K. A., Faith, D. P., et al. (2010). Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution, 64, 1517–1528.PubMedGoogle Scholar
  24. Hershkovitz, P. (1984). Taxonomy of squirrel monkeys genus Saimiri (Cebidae, Platyrrhini): a preliminary report with a description of a hitherto unnamed form. American Journal of Primatology, 6, 257–312.CrossRefGoogle Scholar
  25. IUCN. (2012). IUCN red list of threatened species. Gland: International Union for the Conservation of Nature.Google Scholar
  26. Librado, P., & Rozas, J. (2009). DNASP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.PubMedCrossRefGoogle Scholar
  27. Mace, G. M. (2004). The role of taxonomy in species conservation. Proceedings of the Royal Society of London Series B: Biological Sciences, 359, 711–719.Google Scholar
  28. Mayr, E. (1963). Animal species and evolution. Oxford: Oxford University Press.Google Scholar
  29. Melnick, D. J., Morales, J. C., & Honeycutt, R. L. (1999). Conservation genetics: Applying molecular methods to maximize the conservation of taxonomic and genetic diversity. In P. Raven & T. Williams (Eds.), Nature and human society: The quest for a sustainable world (pp. 264–275). Washington, DC: National Academies Press.Google Scholar
  30. Moritz, C. (1994). Defining 'evolutionarily significant units' for conservation. Trends in Ecology and Evolution, 9(10), 373–375.PubMedCrossRefGoogle Scholar
  31. Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51(2), 238–254.PubMedCrossRefGoogle Scholar
  32. Nores, M. (1999). An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography, 26, 475–485.CrossRefGoogle Scholar
  33. Nylander, A. A. (2004). MrModeltest v2. Program distributed by the author. Uppsala University: Evolutionary Biology Centre.Google Scholar
  34. Ronquist, F., & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.PubMedCrossRefGoogle Scholar
  35. Ryder, O. A. (1986). Species conservation and systematics—the dilemma of subspecies. Trends in Ecology and Evolution, 1(1), 9–10.CrossRefGoogle Scholar
  36. Rylands, A. B., & Mittermeier, R. A. (2008). The diversity of the New World primates (Platyrrhini): An annotated taxonomy. In P. A. Garber, A. Estrada, J. C. Bicca-Marques, E. W. Heymann, & K. B. Strier (Eds.), South American Primates (pp. 23–54). New York: Springer.Google Scholar
  37. Sierra, C., Jimenez, I., Altricher, M., Fernandez, M., Gomez, G., Gonzalez, J., et al. (2003). New data on the distribution and abundance of Saimiri oerstedii citrinellus. Primate Conservation, 19, 5–9.Google Scholar
  38. Templeton, A. R. (1986). Coadaptation and outbreeding depression. In M. Soule (Ed.), Conservation biology: Science of scarcity and diversity (pp. 105–116). Sunderland, MA: Sinauer.Google Scholar
  39. Vogler, A. P., & DeSalle, R. (1994). Diagnosing units of conservation management. Conservation Biology, 8(2), 354–363.CrossRefGoogle Scholar
  40. Walsh, P. D. (2000). Sample size for the diagnosis of conservation units. Conservation Biology, 14, 1533–1537.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mary E. Blair
    • 1
    • 2
    • 3
  • Gustavo A. Gutierrez-Espeleta
    • 4
  • Don J. Melnick
    • 1
    • 3
  1. 1.Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkUSA
  2. 2.Center for Biodiversity and ConservationAmerican Museum of Natural HistoryNew YorkUSA
  3. 3.New York Consortium in Evolutionary PrimatologyNew YorkUSA
  4. 4.Escuela de BiologíaUniversidad de Costa RicaSan JoseCosta Rica

Personalised recommendations