Skip to main content
Log in

Are Primates Ecosystem Engineers?

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Animals can play important roles in structuring the plant communities in which they live. Some species are particularly influential in that they modify the physical environment by changing, maintaining, and/or creating new habitats; the term ecosystem engineer has been used to describe such species. We here assess the two major foraging strategies of primates, frugivory and folivory, in terms of the potential for primates to function as ecosystem engineers. We argue that whereas the role of primates as seed dispersers has received a great deal of attention, the potential role that folivorous primates play in structuring their environment through herbivory has received much less attention. Further, while quantifying if frugivorous primates are ecosystem engineers through their seed dispersal has proved very difficult, it is not as difficult to ascertain whether folivorous primates are ecosystem engineers. We document situations in which folivorous primates act as ecosystem engineers by 1) eating the leaves and/or bark of trees to the extent that they kill trees, 2) feeding on trees to the degree that they slow their growth relative to nonpreferred tree species, 3) eating the flowers of species to the extent that it does not set fruit, or 4) feeding on plants in such a way as to increase their productivity and abundance. Because evidence from the literature is very limited, where possible we present new evidence of these processes from the colobus monkeys at our long-term field site in Kibale National Park, Uganda. We conclude by discussing promising research programs that could be established to refine our understanding of the role primates play in shaping the structure of plant communities, especially tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, J. R. (1984). Ethology and ecology of sleep in monkeys and apes. Advances in the Study of Behavior, 14, 166–229.

    Article  Google Scholar 

  • Andresen, E. (2000). Ecological roles of mammals: the case of seed dispersal. In A. Entwistle & N. Dunstone (Eds.), Priorities for the conservation of mammalian diversity (pp. 2–26). Cambridge: Cambridge University Press.

    Google Scholar 

  • Balcomb, S. R., & Chapman, C. A. (2003). Bridging the gap: influence of seed deposition on seedling recruitment in a primate-tree interaction. Ecological Monographs, 73, 625–642.

    Article  Google Scholar 

  • Berke, S. K. (2010). Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integrative and Comparative Biology, 50, 147–157.

    Article  PubMed  Google Scholar 

  • Chapman, C. A. (1989a). Primate seed dispersal: the fate of dispersed seeds. Biotropica, 21, 148–154.

    Article  Google Scholar 

  • Chapman, C. A. (1989b). Spider monkey sleeping sites: use and availability. American Journal Of Primatology, 18, 53–60.

    Article  Google Scholar 

  • Chapman, C. A. (1995). Primate seed dispersal: coevolution and conservation implications. Evolutionary Anthropology, 4, 74–82.

    Article  Google Scholar 

  • Chapman, C. A., & Onderdonk, D. A. (1998). Forests without primates: primate/plant codependency. American Journal of Primatology, 45, 127–141.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, C. A., & Chapman, L. J. (1997). Forest regeneration in logged and unlogged forests of Kibale National Park, Uganda. Biotropica 29, 396–412.

  • Chapman, C. A., & Chapman, L. J. (2000). Constraints on group size in redtail monkeys and red colobus: Testing the generality of the ecological constraints model. International Journal of Primatology 21, 565–585.

    Google Scholar 

  • Chapman, L. J., Chapman, C. A., & Wrangham, R. W. (1992). Balanites-wilsoniana: elephant dependent dispersal. Journal of Tropical Ecology, 8, 275–283.

    Article  Google Scholar 

  • Chapman, C. A., Chapman, L. J., Jacob, A. L., Rothman, J. M., Omeja, P. A., Reyna-Hurtado, R., et al. (2010a). Tropical tree community shifts: implications for wildlife conservation. Biological Conservation, 143, 366–374.

    Article  Google Scholar 

  • Chapman, C. A., Struhsaker, T. T., Skorupa, J. P., Snaith, T. V., & Rothman, J. M. (2010b). Understanding long-term primate community dynamics: implications of forest change. Ecological Applications, 20, 179–191.

    Article  Google Scholar 

  • Crain, C. M., & Bertness, M. D. (2006). Ecosystem engineering across environmental gradients: implications for conservation and management. BioScience, 56, 211–218.

    Article  Google Scholar 

  • Creel, S., & Christianson, D. (2009). Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades. Ecology, 90, 2454–2466.

    Article  PubMed  Google Scholar 

  • Di Fiore, A., & Suarez, S. A. (2007). Route-based travel and shared routes in sympatric spider and woolly monkeys: cognitive and evolutionary implications. Animal Cognition, 10, 317–329.

    Article  PubMed  Google Scholar 

  • Dittus, W. P. J. (1985). The influence of leaf-monkeys on their feeding trees in a cyclone-disturbed environment. Biotropica, 17, 100–106.

    Article  Google Scholar 

  • Dublin, H. T., Sinclair, A. R. E., & McGlade, J. (1990). Elephants and fire as causes of multiple stable states in the Serengeti Mara woodlands. Journal of Animal Ecology, 59, 1147–1164.

    Article  Google Scholar 

  • Estes, J. A., & Palmisano, J. F. (1974). Sea otters: their role in structuring nearshore communities. Science, 185, 1058–1060.

    Article  PubMed  CAS  Google Scholar 

  • Estrada, A., & Coates-Estrada, R. (1984). Fruit eating and seed dispersal by howling monkeys (Alouatta palliata) in the tropical rain forest of Los Tuxtlas, Mexico. American Journal of Primatology, 6, 77–91.

    Article  Google Scholar 

  • Fashing, P., & Cords, M. (2000). Diurnal primate densities and biomass in the Kakamega Forest: An evaluation of census methodology. American Journal of Primatology, 50(2), 139–152.

    Google Scholar 

  • Feeley, K. J., & Terborgh, J. W. (2005). The effects of herbivore density on soil nutrients and tree growth in tropical fragments. Ecology, 86, 116–124.

    Article  Google Scholar 

  • Feeley, K. J., & Terborgh, J. W. (2006). Direct versus indirect effects of habitat reduction on the loss of avian species from tropical forest fragments. Animal Conservation, 11, 353–360.

    Article  Google Scholar 

  • Forsyth, A., & Miyata, K. (1984). Tropical nature: Life and death in the rain forest of central and south America. New York: Touchstone Books.

    Google Scholar 

  • Fossey, D., & Harcourt, A. H. (1977). Feeding ecology of free-ranging mountain gorillas. In T. H. Clutton-Brock (Ed.), Primate ecology. London: Academic.

    Google Scholar 

  • Gautier-Hion, A., Duplantier, J. M., Quris, R., Feer, F., Sourd, C., Decous, J. P., et al. (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337.

    Article  Google Scholar 

  • Gilmore, D. P., DaCosta, C. P., & Duarte, D. P. F. (2001). Sloth biology: an update on theri physiological ecology, bahvior, and role as vectors of arthropodes and arboviruses. Brazilian Journal of Medical and Biological Research, 34, 9–25.

    Article  PubMed  CAS  Google Scholar 

  • Gogarten, J. F., Brown, L. M., Chapman, C. A., Marina, C., Doran-Sheehy, D., Fedigan, L. M., et al. (2012). Seasonal mortality patterns in non-human primates: Implications for variation in selection pressures across environments. Evolution 66, 3252–3266.

    Google Scholar 

  • Harris, T. R., & Chapman, C. A. (2007). Variation in the diet and ranging behavior of black-and-white colobus monkeys: implications for theory and conservation. Primates, 28, 208–221.

    Article  Google Scholar 

  • Herrera, C. (1985). Determinants of plant-animal coevolution: the case of mutualistic dispersal of seeds by vertebrates. Oikos, 44, 132–141.

    Article  Google Scholar 

  • Hladik, C. M. (1977). A comparative study of the feeding strategies of two sympatric species of leaf monkeys: Presbytis senex and Presbytis entellus. In T. H. Clutton-Brock (Ed.), Primate ecology (pp. 324–353). Cambridge: Cambridge University Press.

    Google Scholar 

  • Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–228.

    Article  Google Scholar 

  • Janson, C. H., & Chapman, C. A. (1999). Resources and the determination of primate community structure. In J. G. Fleagle, C. H. Janson, & K. E. Reed (Eds.), Primate communities (pp. 237–267). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Jin-Eong, O. (1995). The ecology of mangrove conservation and management. Hydrobiologia, 295, 343–351.

    Article  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.

    Article  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Ecosystem engineering by organisms: why semantics matters. Trends in Ecology and Evolution, 12, 275.

    Article  PubMed  CAS  Google Scholar 

  • Jordano, P., Forget, P. M., Lambert, J. E., Bohning-Gaese, K., Traveset, A., & Wright, S. (2011). Frugivores and seed dispersal: mechanisms and consequences for biodiversity of a key ecological interaction. Biology Letters, 7, 321–323.

    Article  PubMed  Google Scholar 

  • Kaplin, B. A., & Lambert, J. E. (2002). Effectiveness of seed dispersal by Cercopithecus monkeys: Implications for seed input into degraded areas. In D. J. Levey, W. R. Silva, & M. Galetti (Eds.), Seed dispersal and frugivory: Ecology, evolution and conservation (pp. 351–364). New York: CABI Publishing.

    Google Scholar 

  • Lambert, J. E. (1997). Fruit processing and seed dispersal by chimpanzees (Pan troglodytes schweinfurthii) and redtail monkeys (Cercopithecus ascanius schmidti) in the Kibale National Park. Urbana: Uganda. University of Illinois.

    Google Scholar 

  • Lambert, J. E., & Garber, P. A. (1998). Evolutionary and ecological implications of primate seed dispersal. American Journal of Primatology, 45, 9–28.

    Article  PubMed  CAS  Google Scholar 

  • Lawes, M. J., & Chapman, C. A. (2006). Does the herb Acanthus pubescens and/or elephants suppress tree regeneration in disturbed Afrotropical forests? Forest Ecology and Management, 221, 274–284.

    Article  Google Scholar 

  • Laws, R. M. (1970). Elephants as agents of habitat and landscape change in East Africa. Oikos, 21, 1–15.

    Article  Google Scholar 

  • Leiberman, D., Hall, J. B., Swaine, M. D., & Lieberman, M. (1979). Seed dispersal by baboons in the Shai Hills, Ghana. Ecology, 60, 65–75.

    Article  Google Scholar 

  • Levey, D. J., Tewksbury, J. J., & Bolker, B. M. (2008). Modelling long-distance seed dispersal in heterogeneous landscapes. Journal of Ecology, 96, 599–608.

    Article  Google Scholar 

  • Ludwig, D., Jones, D. D., & Holling, C. S. (1978). Qualitative analysis of insect outbreak systesm: spruce-budworm and forest. Journal of Animal Ecology, 47, 315–332.

    Article  Google Scholar 

  • McConkey, K. R., Aldy, F., Ario, A., & Chivers, D. J. (2002). Selection of fruit by Gibbons (Hylobates muelleri × agilis) in the rain forests of Central Borneo. International Journal of Primatology, 23, 123–145.

    Article  Google Scholar 

  • McNaughton, S. J. (1976). Serengeti wildebeest: facilitation of energy flow by grazing. Science, 193, 92–94.

    Article  Google Scholar 

  • McNaughton, S. J. (1977). Grazing as an optimizatino process: grassland-ungulate relationships in the Serengeti. American Naturalist, 113, 691–703.

    Google Scholar 

  • Milton, K. (1980). The foraging strategies of howler monkeys: A study in primate economics. New York: Columbia University Press.

    Google Scholar 

  • Montgomery, G. G., & Sunquist, M. E. (1975). Impact of sloths on neotropical energy flow and nutrient cycling. In E. Medina & F. Golly (Eds.), Trends in tropical ecology (pp. 69–98). New York: Springer.

    Chapter  Google Scholar 

  • Naiman, R. J. (1988). Animal influences on ecosystem dynamics. Bioscience, 38, 750–752.

    Article  Google Scholar 

  • Nathan, R., & Muller-Landau, H. C. (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15, 278–285.

    Article  Google Scholar 

  • Neves, N. D. S., Feer, F., Salmon, S., Chateil, C., & Ponge, J.-F. (2010). The impact of red howler monkey latrines on the distribution of main nutrients and on topsoil profiles in a tropical rain forest. Austral Ecology, 35, 549–559.

    Article  Google Scholar 

  • Nunes-Iturri, G., & Howe, H. F. (2007). Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica, 39, 348–354.

    Article  Google Scholar 

  • Oates, J. F. (1974). The ecology and behaviour of the black-and-white colobus monkey (Colobus guereza Ruppell) in East Africa. London: University of London.

    Google Scholar 

  • Oates, J. F. (1977). The guereza and its food. In T. H. Clutton-Brock (Ed.), Primate ecology (pp. 275–321). New York: Academic.

    Google Scholar 

  • Oppenheimer, J. R., & Lang, G. E. (1969). Cebus monkeys: effect on branching of Gustavia trees. Science, 165, 187–188.

    Article  PubMed  CAS  Google Scholar 

  • Pacheco, L. F., & Simonetti, J. A. (2000). Genetic structure of a mimosoid tree deprived of its seed disperser, the spider monkey. Conservation Biology, 14, 1766–1775.

    Article  Google Scholar 

  • Pastor, J., Cohen, Y., & Moen, R. (1999). Generation of spatial patterns in boreal forest landscapes. Ecosystems, 2, 439–452.

    Article  Google Scholar 

  • Pavelka, M. S. M., & Behie, A. M. (2005). The effect of hurricane iris on the food supply of black howlers (Alouatta pigra) in southern Belize. Biotropica, 37, 102–108.

    Article  Google Scholar 

  • Pavelka, M. S. M., Brusselers, O. T., Nowak, D., & Behie, A. M. (2003). Population reduction and social disorganization in Alouatta pigra following a hurricane. International Journal Of Primatology, 24, 1037–1055.

    Article  Google Scholar 

  • Peres, C. A., & Dolman, P. M. (2000). Density compensation in neotropical primate communities: evidence from 56 hunted and nonhunted Amazonian forest of varying productivity. Oecologia, 122, 175–189.

    Article  Google Scholar 

  • Persson, I.-L., Bergstrom, R., & Danell, K. (2007). Browse biomass production an.regrowth capacity after biomass loss in deciduous and coniferous trees: responses to moose browsing along a productivity gradient. Oikos, 116, 1639–1650.

    Article  Google Scholar 

  • Plumptre, A. J. (1993). The effects of trampling damage by herbivores on the vegetation of the Parc National des Volcans, Rwanda. African Journal of Ecology, 32, 115–129.

    Article  Google Scholar 

  • Potvin, C., Lechowicz, M. J., & Tardif, S. (1990). The statistical-analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology, 71, 1389–1400.

    Article  Google Scholar 

  • Poulsen, J. R., Clark, C. J., Connor, E. F., & Smith, T. B. (2002). Differential resource use by primates and hornbills: implications for seed dispersal. Ecology, 83, 228–240.

    Article  Google Scholar 

  • Power, M. (1997). Ecosystem engineering by organisms: why semantics matters, reply. Trends in Ecology and Evolution, 12, 275–276.

    Article  PubMed  CAS  Google Scholar 

  • Reichman, O. J., & Seabloom, E. W. (2002). Ecosystem engineering: a trivialized concept? Response. Trends in Ecology and Evolution, 17, 308.

    Article  Google Scholar 

  • Riba-Hernandez, P., & Stoner, K. E. (2005). Massive destruction of Symphonia globulifera (Clusiaceae) flowers by Central American spider monkeys (Ateles geoffroyi). Biotropica, 37, 274–278.

    Article  Google Scholar 

  • Ripple, W. J. B., & Beschta, R. L. (2005). Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience, 54, 755–766.

    Article  Google Scholar 

  • Russo, S. S., & Chapman, C. A. (2011). Primate seed dispersal: Linking behavioural ecology and forest community structure. In C. J. Campbell, A. F. Fuentes, J. C. MacKinnon, M. Panger, & S. Bearder (Eds.), Primates in perspective (pp. 523–534). Oxford: Oxford University Press.

    Google Scholar 

  • Schupp, E. W. (1993). Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio, 108, 15–29.

    Google Scholar 

  • Schupp, E. W., Jordano, P., & Gomez, J. M. (2010). Seed dispersal effectiveness revisited: a conceptual review. New Phytologist, 188, 333–335.

    Article  PubMed  Google Scholar 

  • Singer, F. J., & Shoenecker, K. E. (2003). Do ungulates accelerate of decelerate nitrogen cycling? Forest Ecology and Management, 181, 189–204.

    Article  Google Scholar 

  • Stevenson, P. R. (2011). The abundance of large Ateline monkeys is positively associated with the diversity of plants regenerating in Neotropical forests. Biotropica, 42, 512–519.

    Article  Google Scholar 

  • Stoner, K. E., Riba-Hernandez, P., Vulinec, K., & Lambert, J. E. (2007). The role of mammals in creating a modifying seed shadows in tropical forests and some possible consequences of their elimination. Biotropica, 39, 316–327.

    Article  Google Scholar 

  • Struhsaker, T. T. (1978). Interrelations of red colobus monkeys and rain-forest trees in the Kibale Forest, Uganda. In G. G. Montgomery (Ed.), The ecology of arboreal folivore (pp. 397–422). Washington: Smithsonian Institution Press.

    Google Scholar 

  • Stuart, N. O. E., Hatton, J. C., & Spencer, D. H. N. (1985). The effect of long-term exclusion of large herbivores on vegetation in Murchison Falls National Park, Uganda. Biological Conservation, 22, 229–245.

    Google Scholar 

  • Terborgh, J., Pitman, M., Silman, H., Schichter, P., & Nunez, V. (2002). Maintenance of tree diversity in tropical forests. In D. Levey, W. Silva, & M. Galetti (Eds.), Seed dispersal and frugivory: Ecology, evolution and conservation (pp. 1–18). Wallingford: CABI Publishing.

    Google Scholar 

  • VanNimwegen, R. E., Kretzer, J., & Cully, J. F. (2008). Ecosystem engineering by a colonial mammal: how praire dogs structure rodent communities. Ecology, 89, 3298–3305.

    Article  PubMed  Google Scholar 

  • Watts, D. P. (1987). Effects of mountain gorilla foraging activities on the productivity of their food plant species. African Journal of Ecology, 25, 155–163.

    Article  Google Scholar 

  • Watts, D. P. (1998). Long-term habitat use by mountain gorillas (Gorilla gorilla beringei). 2. Reuse of foraging areas in relation to resource abundance, quality, and depletion. International Journal of Primatology, 19, 681–702.

    Article  Google Scholar 

  • Wilby, A. (2002). Ecosystem engineering: a trivialized concept? Trends in Ecology and Evolution, 17, 307.

    Article  Google Scholar 

  • Wrangham, R. W., Chapman, C. A., & Chapman, L. J. (1994). Seed dispersal by forest chimpanzees in Uganda. Journal of Tropical Ecology, 10, 355–368.

    Article  Google Scholar 

  • Wright, S. J. (2003). The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology, Evolution, and Systematics, 6, 73–86.

    Article  Google Scholar 

  • Wright, J. P., & Jones, C. G. (2006). The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. BioScience, 56, 203–209.

    Article  Google Scholar 

  • Wright, J. S., Hernandez, A., & Condit, R. (2007). The bushmeat harvest alters seedling banks by favoring lianas, large seeds and seeds dispersed by bats, birds, and wind. Biotropica, 39, 363–371.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for the research in Kibale was provided by the Canada Research Chairs Program, Natural Science and Engineering Research Council of Canada, and National Geographic. M. D. Wasserman was supported by a Tomlinson Post-Doctoral Grant, J. F. Gogarten was supported by a Graduate Research Fellowship form the National Science Foundation, and T. Bonnell was supported by an FQRNT Fellowship. Thanks to Richard Wrangham for initiating the phenology monitoring with C. Chapman in 1989. Permission to conduct this research was given by the National Council for Science and Technology and the Uganda Wildlife Authority. We thank Lauren Chapman, Marco Campenni, Aerin Jacob, and Amy Zanne for helpful comments on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Chapman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, C.A., Bonnell, T.R., Gogarten, J.F. et al. Are Primates Ecosystem Engineers?. Int J Primatol 34, 1–14 (2013). https://doi.org/10.1007/s10764-012-9645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-012-9645-9

Keywords

Navigation