Advertisement

International Journal of Primatology

, Volume 33, Issue 3, pp 632–660 | Cite as

Innovative Approaches to the Relationship Between Diet and Mandibular Morphology in Primates

  • Callum F. Ross
  • Jose Iriarte-Diaz
  • Charles L. Nunn
Article

Abstract

Attempts to establish relationships between mandibular morphology and either traditional dietary categories or geometric and material properties of primate diets have not been particularly successful. Using our conceptual framework of the feeding factors impacting mandibular morphology, we argue that this is because dietary categories and food geometric and material properties affect mandibular morphology only through intervening variables that are currently poorly understood, i.e., feeding behavior, mandibular loading, and stress and strain regimes. Our studies of 3-dimensional jaw kinematics in macaques and capuchins show that, although jaw movement profiles during chewing are affected by food material properties and species-level effects, patterns of jaw movements in these two species are broadly similar. However, because mandibular loading, stress, and strain regimes are determined by interactions between feeding behavior (such as jaw kinematics) and mandibular morphology, it is difficult to say whether these similarities in chewing kinematics also mean similarities in loading, stress, and strain. Comparative analyses of the scaling of daily feeding time and chew cycle duration reveal only weak support for the hypothesis that larger primates chew more than smaller primates. Consideration of these results suggests that better data are needed on the relationship between dietary categories, food material and geometric properties, the amount of time/cycles associated with different feeding behaviors (ingestion, premolar biting, mastication), and mandible stress and strain patterns if we are to understand fully relationships between mandibular morphology and diet in primates.

Keywords

Dietary categories Feeding behavior Food properties Mandibular morphology Stress and strain 

Notes

Acknowledgments

We thank David Reed, Kazutaka Takahashi, McKenna Konecki, and Maryam Saleh, who assisted with data collection. This work was funded by NSF Physical Anthropology (NSF BCS 0240865) (CFR, Co-PI), an NSF HOMINID grant (BCS 0725147) (CFR, Co-PI), and a grant from the Brain Research Foundation at the University of Chicago to C. F. Ross and Nicho Hatsopoulos. C. F. Ross thanks Erin Vogel and Janine Chalk for the invitation to participate in the workshop in Washington, DC, and Andrea Taylor and Peter Ungar for feedback on some of the ideas presented here. We thank Laura Porro for assistance with segmenting CT scans of primate mandibles.

References

  1. Agrawal, K. R., Lucas, P. W., Bruce, I. C., & Prinz, J. F. (1998). Food properties that influence neuromuscular activity during human mastication. Journal of Dental Research, 77(11), 1931–1938.PubMedGoogle Scholar
  2. Agrawal, K. R., Lucas, P. W., & Bruce, I. C. (2000). The effects of food fragmentation index on mandibular closing angle in human mastication. Archives of Oral Biology, 45(7), 577–584.PubMedGoogle Scholar
  3. Anapol, F., Shahnoor, N., & Ross, C. F. (2008). Scaling of reduced physiologic cross-sectional area in primate muscles of mastication. In C. Vinyard, C. E. Wall, & M. J. Ravosa (Eds.), Primate craniofacial function and biology (pp. 201–216). New York: Springer.Google Scholar
  4. Antón, S. C. (1996). Cranial adaptation to a high attrition diet in Japanese macaques. International Journal of Primatology, 17, 401–427.Google Scholar
  5. Antón, S. C. (1999). Macaque masseter muscle: internal architecture, fiber length, and cross-sectional area. International Journal of Primatology, 20, 441–462.Google Scholar
  6. Antón, S. C. (2000). Macaque pterygoid muscles: internal architecture, fiber length, and cross-sectional area. International Journal of Primatology, 21, 131–156.Google Scholar
  7. Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10ktrees website: a new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.Google Scholar
  8. Bouvier, M. (1986a). A biomechanical analysis of mandibular scaling in Old World monkeys. American Journal of Physical Anthropology, 69, 473–482.Google Scholar
  9. Bouvier, M. (1986b). Biomechanical scaling of mandibular dimensions in New World monkeys. International Journal of Primatology, 7, 551–567.Google Scholar
  10. Bouvier, M., & Hylander, W. L. (1981a). Effect of bone strain on cortical bone structure in macaques (Macaca mulatta). Journal of Morphology, 167(1), 1–12.PubMedGoogle Scholar
  11. Bouvier, M., & Hylander, W. L. (1981b). The effect of dietary consistency on the morphology of the mandibular condylar cartilage in macaques. American Journal of Physical Anthropology, 54(2), 203–204.Google Scholar
  12. Bouvier, M., & Hylander, W. L. (1984). The effect of dietary consistency on gross and histologic morphology in the craniofacial region of young rats. The American Journal of Anatomy, 170(1), 117–126.PubMedGoogle Scholar
  13. Brown, B. (1997). Miocene hominoid mandibles – functional and phylogenetic perspectives. In D. R. Begun, C. V. Ward, & M. D. Rose (Eds.), Function, phylogeny and fossils: Miocene hominoid evolution and adaptation (pp. 153–171). New York: Plenum.Google Scholar
  14. Cachel, S. (1984). Growth and allometry in primate masticatory muscles. Archives of Oral Biology, 29, 287–293.PubMedGoogle Scholar
  15. Daegling, D. J. (1992). Mandibular morphology and diet in the genus Cebus. International Journal of Primatology, 13, 545–570.Google Scholar
  16. Daegling, D. J. (2002). Bone geometry in cercopithecoid mandibles. Archives of Oral Biology, 47(4), 315–325.PubMedGoogle Scholar
  17. Daegling, D. J. (2007). Relationship of bone utilization and biomechanical competence in hominoid mandibles. Archives of Oral Biology, 52(1), 51–63.PubMedGoogle Scholar
  18. Daegling, D. J., & Grine, F. E. (2006). Mandibular biomechanics and the paleontological evidence for the evolution of human diet. In P. S. Ungar (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable (pp. 77–105). New York: Oxford University Press.Google Scholar
  19. Daegling, D. J., & McGraw, W. S. (2000). Gnathic morphology and feeding ecology in papionin primates. American Journal of Physical Anthropology, 30(Supplement), 134.Google Scholar
  20. Daegling, D. J., & McGraw, W. S. (2001). Feeding, diet, and jaw form in West African Colobus and Procolobus. International Journal of Primatology, 22(6), 1033–1055.Google Scholar
  21. Daegling, D. J., & McGraw, W. S. (2007). Functional morphology of the mangabey mandibular corpus: relationship to dental specializations and feeding behavior. American Journal of Physical Anthropology, 134(1), 50–62.PubMedGoogle Scholar
  22. Darvell, B. W., Lee, P. K. D., Yuen, T. D. B., & Lucas, P. W. (1996). A portable fracture toughness tester for biological materials. Measurement Science and Technology, 7, 954–962.Google Scholar
  23. De Jong, W. C. (2011). The physiology of habitual bone strains. Amsterdam: University of Amsterdam.Google Scholar
  24. de Jong, W. C., Koolstra, J. H., Korfage, J. A. M., van Ruijven, L. J., & Langenbach, G. E. J. (2010). The daily habitual in vivo strain history of a non-weight-bearing bone. Bone, 46(1), 196–202.PubMedGoogle Scholar
  25. Doncaster, C.P., & Davey, A. J. H. (2007). Analysis of variance and covariance : How to choose and construct models for the life sciences. Cambridge: Cambridge University Press.Google Scholar
  26. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.Google Scholar
  27. Fish, D. R., & Mendel, F. C. (1982). Mandibular movement patterns relative to food types in common tree shrews (Tupaia glis). American Journal of Physical Anthropology, 58, 255–269.PubMedGoogle Scholar
  28. Foster, K. D., Woda, A., & Peyron, M. A. (2006). Effect of texture of plastic and elastic model foods on the parameters of mastication. Journal of Neurophysiology, 95(6), 3469–3479.PubMedGoogle Scholar
  29. Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist, 160, 712–726.PubMedGoogle Scholar
  30. Gallo, L. M. (2005). Modeling of temporomandibular joint function using MRI and jaw-tracking technologies—Mechanics. Cells, Tissues, Organs, 180(1), 54.PubMedGoogle Scholar
  31. Gallo, L. M., Airoldi, G. B., Airoldi, R. L., & Palla, S. (1997). Description of mandibular finite helical axis pathways in asymptomatic subjects. Journal of Dental Research, 76(2), 704–713.PubMedGoogle Scholar
  32. Gallo, L. M., Fushima, K., & Palla, S. (2000). Mandibular helical axis pathways during mastication. Journal of Dental Research, 79(8), 1566–1572.PubMedGoogle Scholar
  33. Garland, T., & Ives, A. R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist, 155(3), 346–364.Google Scholar
  34. Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaatari, S. (2006). Molar microwear in Praeanthropus afarensis: evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution, 51(3), 297–319.PubMedGoogle Scholar
  35. Hiiemae, K. M. (1978). Mammalian mastication: A review of the activity of jaw muscles and the movements they produce in chewing. In P. M. Butler & K. Joysey (Eds.), Development, function and evolution of teeth (pp. 359–398). London: Academic Press.Google Scholar
  36. Hiiemae, K. M., & Crompton, A. W. (1985). Mastication, food transport, and swallowing. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), Functional vertebrate morphology (pp. 262–290). Cambridge: Belknap Press.Google Scholar
  37. Hiiemae, K. M., & Kay, R. F. (1973). Evolutionary trends in the dynamics of primate mastication. In M. R. Zingeser (Ed.), Fourth international congress of primatology (Craniofacial biology of primates, Vol. 3, pp. 28–64). Basel: Karger.Google Scholar
  38. Hogue, A. S. (2008). Mandibular corpus form and its functional significance: Evidence from marsupials. In C. Vinyard, M. J. Ravosa, & C. E. Wall (Eds.), Primate craniofacial function and biology (pp. 329–356). New York: Springer.Google Scholar
  39. Huelsenbeck, J. P., Rannala, B., & Masly, J. P. (2000). Accommodating phylogenetic uncertainty in evolutionary studies. Science, 288, 2349–2350.PubMedGoogle Scholar
  40. Hylander, W. L. (1979a). The functional significance of primate mandibular form. Journal of Morphology, 160, 223–240.PubMedGoogle Scholar
  41. Hylander, W. L. (1979b). Mandibular function in Galago crassicaudatus and Macaca fascicularis: an in vivo approach to stress analysis of the mandible. Journal of Morphology, 159, 253–296.PubMedGoogle Scholar
  42. Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. American Journal of Physical Anthropology, 64, 1–46.PubMedGoogle Scholar
  43. Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling. American Zoologist, 25, 315–330.Google Scholar
  44. Hylander, W. L. (1988). Implications of in vivo experiments for interpreting the functional significance of "robust" australopithecine jaws. In F. E. Grine (Ed.), Evolutionary history of the "robust" australopithecines (pp. 55–83). New York: Aldine de Gruyter.Google Scholar
  45. Hylander, W. L., & Johnson, K. R. (1997). In vivo bone strain patterns in the zygomatic arch of macaques and the significance of these patterns for functional interpretations of craniofacial form. American Journal of Physical Anthropology, 102, 203–232.PubMedGoogle Scholar
  46. Hylander, W. L., & Ravosa, M. J. (1992). An analysis of the supraorbital region of primates: A morphometric and experimental approach. In P. Smith & E. Tchernov (Eds.), Structure, function and evolution of teeth (pp. 223–255). London: Freund.Google Scholar
  47. Hylander, W. L., Johnson, K. R., & Crompton, A. W. (1987). Loading patterns and jaw movements during mastication in Macaca fascicularis: a bone-strain, electromyographic, and cineradiographic analysis. American Journal of Physical Anthropology, 72, 287–314.PubMedGoogle Scholar
  48. Hylander, W. L., Picq, P. G., & Johnson, K. R. (1991a). Function of the supraorbital region of primates. Archives of Oral Biology, 36(4), 273–281.PubMedGoogle Scholar
  49. Hylander, W. L., Picq, P. G., & Johnson, K. R. (1991b). Masticatory-stress hypotheses and the supraorbital region of primates. American Journal of Physical Anthropology, 86, 1–36.PubMedGoogle Scholar
  50. Hylander, W. L., Ravosa, M. J., Ross, C. F., & Johnson, K. R. (1998). Mandibular corpus strain in Primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. American Journal of Physical Anthropology, 107, 257–271.PubMedGoogle Scholar
  51. Hylander, W. L., Ravosa, M. J., Ross, C. F., Wall, C. E., & Johnson, K. R. (2000a). Jaw-muscle recruitment patterns during mastication in anthropoids and prosimians. American Journal of Physical Anthropology, 30(Supplement), 185.Google Scholar
  52. Hylander, W. L., Ravosa, M. J., Ross, C. F., Wall, C. E., & Johnson, K. R. (2000b). Symphyseal fusion and jaw-adductor muscle force: an EMG study. American Journal of Physical Anthropology, 112(4), 469–492.PubMedGoogle Scholar
  53. Hylander, W. L., Vinyard, C. J., Wall, C. E., Williams, S. H., & Johnson, K. R. (2002). Recruitment and firing patterns of jaw muscles during mastication in ring-tailed lemurs. American Journal of Physical Anthropology, Supplement, 34, 88.Google Scholar
  54. Hylander, W. L., Ravosa, M. J., & Ross, C. F. (2004). Jaw muscle recruitment patterns during mastication in anthropoids and prosimians. In F. Anapol, R. Z. German, & N. G. Jablonski (Eds.), Shaping primate evolution (pp. 229–257). Cambridge: Cambridge University Press.Google Scholar
  55. Hylander, W. L., Vinyard, C. J., Wall, C. E., Williams, S. H., & Johnson, K. R. (2011). Functional and evolutionary significance of the recruitment and firing patterns of the jaw adductors during chewing in verreaux's sifaka (Propithecus verreauxi). American Journal of Physical Anthropology, 145(4), 531–547.PubMedGoogle Scholar
  56. Iriarte-Diaz, J., Reed, D. A., & Ross, C. F. (2011). Sources of variance in temporal and spatial aspects of jaw kinematics in two species of primates feeding on foods of different properties. Integrative and Comparative Biology. 51(2), 307–319.Google Scholar
  57. Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43, 195–216.PubMedGoogle Scholar
  58. Kay, R. F. (1984). On the use of anatomical features to infer foraging behavior in extinct primates. In P. S. Rodman & J. G. Cant (Eds.), Adaptations for foraging in nonhuman primates (pp. 21–53). New York: Columbia University Press.Google Scholar
  59. Kay, R. F. (1985). Dental evidence for the diet of Australopithecus. Annual Review of Anthropology, 14, 315–341.Google Scholar
  60. Kay, R. F., & Hiiemae, K. M. (1974). Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology, 40(2), 227–256.PubMedGoogle Scholar
  61. Kay, R. F., & Hylander, W. L. (1978). The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In G. G. Montgomery (Ed.), The biology of arboreal folivores (pp. 173–191). Washington, DC: Smithsonian Institution Press.Google Scholar
  62. Kay, R. F., & Ungar, P. S. (1997). Dental evidence for diet in some Miocene catarrhines with comments on the effects of phylogeny on the interpretation of adaptation. In D. R. Begun, C. V. Ward, & M. D. Rose (Eds.), Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations (pp. 131–151). New York: Plenum Press.Google Scholar
  63. Kay, R. F., Schmitt, D., Vinyard, C., Perry, J., Shigehara, N., Takai, M., et al. (2004). The paleobiology of Amphipithecidae, South Asian late Eocene primates. Journal of Human Evolution, 46, 3–25.PubMedGoogle Scholar
  64. Lucas, P. W. (1979). The dental-dietary adaptations of mammals. Neues Jarhbuch für Geologie und Paleontologie, 8, 486–512.Google Scholar
  65. Lucas, P. W. (2004). Dental functional morphology: How teeth work. Cambridge: Cambridge University Press.Google Scholar
  66. Lucas, P. W., & Teaford, M. F. (1994). The functional morphology of colobine teeth. In J. Oates & A. G. Davies (Eds.), Colobine monkeys: Their evolutionary ecology (pp. 173–203). Cambridge: Cambridge University Press.Google Scholar
  67. Lucas, P. W., Beta, T., Darvell, B. W., Dominy, N. J., Essackjee, H. C., Lee, P. K. D., et al. (2001). Field kit to characterize physical, chemical and spatial aspects of potential foods of primates. Folia Primatologica, 72, 11–15.Google Scholar
  68. Lucas, P. W., Constantino, P., & Wood, B. (2008). Inferences regarding the diet of extinct hominins: structural and functional trends in dental and mandibular morphology within the hominin clade. Journal of Anatomy, 212, 486–500.PubMedPubMedCentralGoogle Scholar
  69. Lucas, P. W., Constantino, P. J., Chalk, J., Ziscovici, C., Wright, B. W., Fragaszy, D. M., et al. (2009). Indentation as a technique to assess the mechanical properties of fallback foods. American Journal of Physical Anthropology, 140(4), 643–652.PubMedGoogle Scholar
  70. Lutzoni, F., Pagel, M., & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937–940.PubMedGoogle Scholar
  71. Norconk, M. A., Wright, B. W., Conklin-Brittain, N. L., & Vinyard, C. J. (2009). South American primates: Testing new theories in the study of primate behavior, ecology, and conservation. In A. Estrada, P. A. Garber, J. C. Bicca-Marques, E. Heymann, & K. Strier (Eds.), Mechanical and nutritional properties of foods as factors in platyrrhine dietary adaptations (pp. 279–319). New York: Springer.Google Scholar
  72. Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: University of Chicago Press.Google Scholar
  73. Organ, C., Nunn, C. L., Machanda, Z., & Wrangham, R. W. (2011). Phylogenetic rate shifts in feeding time during the evolution of Homo. Proceedings of the National Academy of Sciences of the USA, 108(35), 14555–14559.PubMedPubMedCentralGoogle Scholar
  74. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.PubMedGoogle Scholar
  75. Pagel, M., & Lutzoni, F. (2002). Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In M. Laessig & A. Valleriani (Eds.), Biological evolution and statistical physics (pp. 148–161). Berlin: Springer-Verlag.Google Scholar
  76. Pagel, M., & Meade, A. (2007). BayesTraits (www.evolution.rdg.ac.uk) (Version 1.0). Reading, UK.
  77. Perry, J. M. G., & Wall, C. E. (2008). Scaling of the chewing muscles in prosimians. In C. Vinyard, M. J. Ravosa, & C. E. Wall (Eds.), Primate craniofacial function and biology (pp. 217–240). New York: Springer.Google Scholar
  78. Perry, J. M. G., Hartstone-Rose, A., & Wall, C. E. (2011). The jaw adductors of strepsirrhines in relation to body size, diet, and ingested food size. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(4), 712–728.Google Scholar
  79. Plesh, O., Bishop, W., & McCall, W. (1986). Effect of gum hardness on chewing pattern. Experimental Neurology, 92(3), 502–512.PubMedGoogle Scholar
  80. Rambaut, A., & Drummond, H. (2003–2009). Tracer: MCMC Trace Analysis Tool (Version 1.5.0).Google Scholar
  81. Ravosa, M. J. (1988). Browridge development in Cercopithecidae: a test of two models. American Journal of Physical Anthropology, 76, 535–555.Google Scholar
  82. Ravosa, M. J. (1990). Functional assessment of subfamily variation in maxillomandibular morphology among Old-World monkeys. American Journal of Physical Anthropology, 82(2), 199–212.PubMedGoogle Scholar
  83. Ravosa, M. J. (1991). Structural allometry of the mandibular corpus and symphysis in prosimian primates. Journal of Human Evolution, 20, 3–20.Google Scholar
  84. Ravosa, M. J. (1992). Allometry and heterochrony in extant and extinct Malagasy primates. Journal of Human Evolution, 23(2), 197–217.Google Scholar
  85. Ravosa, M. J. (1996). Jaw morphology and function in living and fossil Old World monkeys. International Journal of Primatology, 17(6), 909–932.Google Scholar
  86. Ravosa, M. J. (2000). Size and scaling in the mandible of living and extinct apes. Folia Primatologica, 71(5), 305–322.Google Scholar
  87. Ravosa, M. J., Johnson, K. R., & Hylander, W. L. (2000a). Strain in the galago facial skull. Journal of Morphology, 245, 51–66.Google Scholar
  88. Ravosa, M. J., Vinyard, C. J., Gagnon, M., & Islam, S. A. (2000b). Evolution of anthropoid jaw loading and kinematic patterns. American Journal of Physical Anthropology, 112(4), 493–516.Google Scholar
  89. Ravosa, M. J., Kunwar, R., Stock, S. R., & Stack, M. S. (2007). Pushing the limit: masticatory stress and adaptive plasticity in mammalian craniomandibular joints. Journal of Experimental Biology, 210(4), 628–641.PubMedGoogle Scholar
  90. Ravosa, M. J., Ning, J., Costley, D. B., Daniel, A. N., Stock, S. R., & Stack, M. S. (2010). Masticatory biomechanics and masseter fiber-type plasticity. Journal of Musculoskeletal & Neuronal Interactions, 10(1), 46–55.Google Scholar
  91. R-Development-Core-Team. (2010). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  92. Reed, D. A., & Ross, C. F. (2010). The influence of food material properties on jaw kinematics in the primate, Cebus. Archives of Oral Biology, 55, 946–962.PubMedGoogle Scholar
  93. Ritchie, R. O., Kinney, J. H., Kruzic, J. J., & Nalla, R. K. (2005). A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue and Fracture of Engineering Materials and Structures, 28, 345–371.Google Scholar
  94. Ross, C. F. (2001). In vivo function of the craniofacial haft: the interorbital “pillar. American Journal of Physical Anthropology, 116, 108–139.PubMedGoogle Scholar
  95. Ross, C. F., Dharia, R., Herring, S. W., Hylander, W. L., Liu, Z.-J., Rafferty, K. L., Ravosa, M. J., & Williams, S. H. (2007a). Modulation of mandibular loading and bite force in mammals during mastication. Journal of Experimental Biology, 210, 1046–1063.Google Scholar
  96. Ross, C. F., Eckhardt, A., Herrel, A., Hylander, W. L., Metzger, K. A., Schaerlaeken, V., Washington, R. L., & Williams, S. H. (2007b). Modulation of intra-oral processing in mammals and lepidosaurs. Integrative and Comparative Biology, 47, 118–136.Google Scholar
  97. Ross, C. F., & Hylander, W. L. (1996). In vivo and in vitro bone strain in the owl monkey circumorbital region and the function of the postorbital septum. American Journal of Physical Anthropology, 101(2), 183–215.PubMedGoogle Scholar
  98. Ross, C. F., & Metzger, K. A. (2004). Bone strain gradients and optimization in tetrapod skulls. Annals of Anatomy, 186, 387–396.PubMedGoogle Scholar
  99. Ross, C. F., Henneberg, M., Ravosa, M. J., & Richard, S. (2004). Curvilinear, geometric and phylogenetic modeling of basicranial flexion: is it adaptive, is it constrained? Journal of Human Evolution, 46(2), 185–213.PubMedGoogle Scholar
  100. Ross, C. F., Reed, D. A., Washington, R. L., Eckhardt, A., Anapol, F., & Shahnoor, N. (2009a). Scaling of chew cycle duration in primates. American Journal of Physical Anthropology, 138(1), 30–44.Google Scholar
  101. Ross, C. F., Washington, R. L., Eckhardt, A., Reed, D. A., Vogel, E., Dominy, N. J., et al. (2009b). Ecological consequences of scaling of chew cycle duration and daily feeding time in Primates. Journal of Human Evolution, 56, 570–585.Google Scholar
  102. Ross, C. F., Berthaume, M. A., Dechow, P. C., Iriarte-Diaz, J., Porro, L. B., Richmond, B. G., et al. (2011). In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates. Journal of Anatomy, 218(1), 112–148.PubMedPubMedCentralGoogle Scholar
  103. Searle, S. R., Casella, G., & McCulloch, C. E. (2006). Variance components. 3rd ed. New York: Wiley.Google Scholar
  104. Shah, N. (2003). Foraging strategies in two sympatric mangabey species (Cercocebus agilis and Lophocebus albigena). Stony Brook: Stony Brook University.Google Scholar
  105. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W. H. Freeman and Co.Google Scholar
  106. Spoor, C. W., & Veldpaus, F. E. (1980). Rigid body motion calculated from spatial co-ordinates of markers. Journal of Biomechanics, 13(4), 391.PubMedGoogle Scholar
  107. Strait, S. G. (1993a). Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution, 25, 471–484.Google Scholar
  108. Strait, S. G. (1993b). Molar morphology and food texture among small-bodied insectivorous mammals. Journal of Mammalogy, 74, 391–402.Google Scholar
  109. Strait, D. S., Weber, G. W., Neubauer, S., Chalk, J., Richmond, B. G., Lucas, P. W., et al. (2009). The feeding biomechanics and dietary ecology of Australopithecus africanus. Proceedings of the National Academy of Sciences of the USA, 106(7), 2124–2129.PubMedPubMedCentralGoogle Scholar
  110. Taylor, A. B. (2002). Masticatory form and function in the African apes. Americal Journal of Physical Anthropology, 117, 133–156.Google Scholar
  111. Taylor, A. B., & Vinyard, C. J. (2004). Comparative analysis of masseter fiber architecture in tree-gouging (Callithrix jacchus) and nongouging (Saguinus oedipus) callitrichids. Journal of Morphology, 261(3), 276–285.PubMedGoogle Scholar
  112. Taylor, A. B., & Vinyard, C. J. (2008). The relationship between jaw-muscle fiber architecture and feeding behavior in primates: Tree-gouging and nongouging gummivorous callitrichids as a natural experiment. In C. J. Vinyard, M. J. Ravosa, & C. E. Wall (Eds.), Primate craniofacial function and biology (pp. 241–264). New York: Springer.Google Scholar
  113. Taylor, A. B., & Vinyard, C. J. (2009). Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape. Journal of Human Evolution, 57(6), 710–720.PubMedPubMedCentralGoogle Scholar
  114. Taylor, A. B., Jones, K. E., Kunwar, R., & Ravosa, M. J. (2006). Dietary consistency and plasticity of masseter fiber architecture in postweaning rabbits. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 128, 1105–1111.Google Scholar
  115. Taylor, A. B., Vogel, E. R., & Dominy, N. J. (2008). Food material properties and mandibular load resistance abilities in large-bodied hominoids. Journal of Human Evolution, 55(4), 604–616.PubMedGoogle Scholar
  116. Teaford, M. F., & Ungar, P. S. (2000). Diet and the evolution of the earliest human ancestors. PNAS, 97(25), 13506–13511.PubMedPubMedCentralGoogle Scholar
  117. Terhune, C. E. (2009). Scaling relationships in the anthropoid temporomandibular joint. American Journal of Physical Anthropology, 48(Supplement), 254.Google Scholar
  118. Terhune, C. E. (2010). The temporomandibular joint in anthropoid primates: Functional, allometric, and phylogenetic influences. Phoenix: Arizona State University.Google Scholar
  119. Terhune, C. E., Iriarte-Diaz, J., Taylor, A. B., & Ross, C. F. (2011). The instantaneous center of rotation of the mandible in non-human primates. Integrative and Comparative Biology in press.Google Scholar
  120. Thompson, C. L., Donley, E. M., Stimpson, C. D., Horne, W. I., & Vinyard, C. J. (2011). The influence of experimental manipulations on chewing speed during in vivo laboratory research in tufted capuchins (Cebus apella). American Journal of Physical Anthropology, 145(3), 402–414.PubMedGoogle Scholar
  121. Ungar, P. S. (2004). Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution, 46(5), 605–622.PubMedGoogle Scholar
  122. Ungar, P. S., & Spencer, M. (1999). Incisor microwear, diet, and tooth use in three Amerindian populations. American Journal of Physical Anthropology, 109(3), 387–396.PubMedGoogle Scholar
  123. Ungar, P. S., & Sponheimer, M. (2011). The diets of early hominins. Science, 334(6053), 190–193.PubMedGoogle Scholar
  124. Ungar, P. S., Grine, F., & Teaford, M. F. (2006). Diet in early Homo: a review of the evidence and a new model of adaptive versatility. Annual Review of Anthropology, 35, 209–228.Google Scholar
  125. Vinyard, C. J., & Ryan, T. M. (2006). Cross-sectional bone distribution in the mandibles of gouging and non-gouging Platyrrhini. International Journal of Primatology, 27(5), 1461–1490.Google Scholar
  126. Vinyard, C. J., Wall, C. E., Williams, S. H., & Hylander, W. L. (2003). Comparative functional analysis of skull morphology of tree-gouging primates. American Journal of Physical Anthropology, 120, 153–170.PubMedGoogle Scholar
  127. Vinyard, C. J., Wall, C. E., Williams, S. H., & Hylander, W. L. (2008a). Patterns of variation across primates in jaw-muscle electromyography during mastication. Integrative and Comparative Biology, 48(2), 294–311.Google Scholar
  128. Vinyard, C. J., Yamashita, N., & Tan, C. L. (2008b). Linking laboratory and field approaches in studying the evolutionary physiology of biting in bamboo lemurs. International Journal of Primatology, 29, 1421–1439.Google Scholar
  129. Vinyard, C. J., Taylor, A. B., Teaford, M. F., Glander, K. E., Ravosa, M. J., Rossie, J. B., et al. (2011). Are we looking for loads in all the right places? New research directions for studying the masticatory apparatus of New World monkeys. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(12), 2140–2157.Google Scholar
  130. Vogel, E. R., van Woerden, J. T., Lucas, P. W., Utami Atmoko, S. S., van Schaik, C. P., & Dominy, N. J. (2008). Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. Journal of Human Evolution, 55, 60–74.Google Scholar
  131. Wall, C. E. (1995). Form and function of the temporomandibular joint in anthropoid primates. Ph.D. dissertation, State University of New York at Stony Brook, Stony Brook, NY.Google Scholar
  132. Wall, C. E. (1999). A model of TMJ function in anthropoid primates based on condylar movements during mastication. Americal Journal of Physical Anthropology, 109, 67–88.Google Scholar
  133. Weijs, W. A., & De Jong, J. H. (1977). Strain in mandibular alveolar bone during mastication in the rabbit. Archives of Oral Biology, 22, 667–675.PubMedGoogle Scholar
  134. Williams, S. H., Vinyard, C., Glander, K., Deffenbaugh, M., Teaford, M., & Thompson, C. (2008). Telemetry system for assessing jaw-muscle function in free-ranging primates. International Journal of Primatology, 29(6), 1441–1453.Google Scholar
  135. Williams, S. H., Stover, K. K., Davis, J. S., & Montuelle, S. J. (2011). Mandibular corpus bone strains during mastication in goats (Capra hircus): a comparison of ingestive and rumination chewing. Archives of Oral Biology, 56, 960–971.PubMedGoogle Scholar
  136. Woda, A., Foster, K., Mishellany, A., & Peyron, M. A. (2006a). Adaptation of healthy mastication to factors pertaining to the individual or to the food. Physiology & Behavior, 89(1), 28–35.Google Scholar
  137. Woda, A., Mishellany, A., & Peyron, M. A. (2006b). The regulation of masticatory function and food bolus formation. Journal of Oral Rehabilitation, 33(11), 840–849.Google Scholar
  138. Wright, B. W., Wright, K. A., Chalk, J., Verderane, M. P., Fragaszy, D., Visalberghi, E., et al. (2009). Fallback foraging as a way of life: using dietary toughness to compare the fallback signal among capuchins and implications for interpreting morphological variation. American Journal of Physical Anthropology, 140(4), 687–699.PubMedGoogle Scholar
  139. Wroe, S., Moreno, K., Clausen, P., McHenry, C., & Curnoe, D. (2007). High-resolution three-dimensional computer simulation of hominid cranial mechanics. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 290(10), 1248–1255.Google Scholar
  140. Yamashita, N. (2008). Food physical properties and their relationship to morphology: The curious case of kily. In C. Vinyard, M. J. Ravosa, & C. E. Wall (Eds.), Primate craniofacial function and biology (pp. 387–406). New York: Springer.Google Scholar
  141. Zioupos, P., Currey, J. D., & Casinos, A. (2001). Tensile fatigue in bone: are cycles-, or time to failure, or both, important? Journal of Theoretical Biology, 210(3), 389.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Callum F. Ross
    • 1
  • Jose Iriarte-Diaz
    • 1
  • Charles L. Nunn
    • 2
  1. 1.Department of Organismal Biology & AnatomyUniversity of ChicagoChicagoUSA
  2. 2.Department of Human Evolutionary Biology, Peabody MuseumHarvard UniversityCambridgeUSA

Personalised recommendations