International Journal of Primatology

, Volume 33, Issue 5, pp 1125–1141

A Comparison of Social Organization in Asian Elephants and African Savannah Elephants

Article

Abstract

Asian and African elephant species have diverged by ca. 6 million years, but as large, generalist herbivores they occupy similar niches in their respective environments. Although the multilevel, hierarchical nature of African savannah elephant societies is well established, it has been unclear whether Asian elephants behave similarly. Here we quantitatively compare the structure of both species’ societies using association data collected using the same protocol over similar time periods. Sociality in both species demonstrates well-defined structure, but in contrast to the African elephants of Samburu the Uda Walawe Asian elephants are found in smaller groups, do not maintain coherent core groups, demonstrate markedly less social connectivity at the population level, and are socially less influenced by seasonal differences in ecological conditions. The Uda Walawe Asian elephants, however, do maintain a complex, well-networked society consisting of ≥2 differentiated types of associates we term ephemeral and long-term affiliates. These findings imply we must broaden our recognition of multilevel social organization to encompass societies that fall along a gradient of nestedness, and not merely those that exhibit hierarchical nesting. This in turn suggests that multilevel structures may be more diverse and widespread than generally thought, and that phylogenetic comparisons within species-rich clades, such as that of primates, using the methods presented can provide fresh insights into their socioecological basis.

Keywords

Fission–fusion Hierarchical structure Multilevel societies Social organization 

Supplementary material

10764_2011_9564_MOESM1_ESM.doc (360 kb)
ESM 1(DOC 360 kb)

References

  1. Archie, E. A., Morrison, T. A., Foley, C. A. H., Moss, C., & Alberts, S. (2006). Dominance rank relationships among wild female African elephants, Loxodonta africana. Animal Behavior, 71, 117–127.CrossRefGoogle Scholar
  2. Arnold, K. E. (2000). Group mobbing behaviour and nest defence in a cooperatively breeding Australian bird. Ethology, 106, 385–393.CrossRefGoogle Scholar
  3. Bejder, L., Fletcher, D., & Bräger, S. (1998). A method for testing association patterns of social animals. Animal Behavior, 56, 719–725.CrossRefGoogle Scholar
  4. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). UCINET for Windows: Software for social network analysis. Harvard, MA: Analytic Technologies.Google Scholar
  5. Buss, I. O. (1961). Some observations on food habits and behavior of the African elephant. The Journal of Wildlife Management, 25, 131–148.CrossRefGoogle Scholar
  6. Buss, I. O., & Smith, N. S. (1966). Observations on reproduction and breeding behavior of the African elephant. The Journal of Wildlife Management, 30, 375–388.CrossRefGoogle Scholar
  7. Cairns, S. J., & Schwager, S. J. (1987). A comparison of association indexes. Animal Behaviour, 35, 1454–1469.CrossRefGoogle Scholar
  8. Campos-Arceiz, A., & Blake, S. (2011). Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecologica, 37, 542–553.Google Scholar
  9. Campos-Arceiz, A., Larrinaga, A. R., Weerasinghe, U. R., Takatsuki, S., Pastorini, J., Leimgruber, P., Fernando, P., & Santamaria, L. (2008). Behavior rather than diet mediates seasonal differences in seed dispersal by Asian elephants. Ecology, 89, 2684–2691.PubMedCrossRefGoogle Scholar
  10. Caro, T., Graham, C., Stoner, C., & Vargas, J. (2004). Adaptive significance of anti-predator behavior in artiodactyls. Animal Behaviour, 67, 205–228.CrossRefGoogle Scholar
  11. Chapman, C. A., & Chapman, L. J. (2000). Constraints on group size in red colobus and red-tailed guenons: Examining the generality of the ecological constraints model. International Journal of Primatology, 21, 565–585.CrossRefGoogle Scholar
  12. Chapman, C. A., Wrangham, R. W., & Chapman, L. J. (1995). Ecological constraints on group-size—an analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology, 36, 59–70.CrossRefGoogle Scholar
  13. Chase, I. D., Tovey, C., Spangler-Martin, D., & Manfredonia, M. (2002). Individual differences versus social dynamics in the formation of animal dominance hierarchies. Proceedings of the National Academy of Sciences of the USA, 99, 5744–5749.PubMedCrossRefGoogle Scholar
  14. Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.CrossRefGoogle Scholar
  15. Connor, R. C., Smolker, R. A., & Richards, A. F. (1992). Two levels of alliance formation among male bottlenose dolphins (Tursiops sp.). Proceedings of the National Academy of Sciences of the USA, 89, 987–990.PubMedCrossRefGoogle Scholar
  16. Cross, P. C., Lloyd-Smith, J. O., & Getz, W. M. (2005). Disentangling association patterns in fission-fusion societies using African buffalo as an example. Animal Behavior, 69, 499–506.CrossRefGoogle Scholar
  17. Darden, S. K., James, R., Ramnarine, I. W., & Croft, D. P. (2009). Social implications of the battle of the sexes: sexual harassment disrupts female sociality and social recognition. Proceeding of the Royal Society Series B: Biological Sciences, 276, 2651–2656.CrossRefGoogle Scholar
  18. de Silva, S., Rangeewa, A., & Kryazhimskiy, S. (2011). The dynamics of social networks among female Asian elephants. BMC Ecology, 11, 17.PubMedCrossRefGoogle Scholar
  19. de Silva, S., Rangeewa, A. D. G., & Weerakoon, D. (2011). Demography of Asian elephants from identified individuals at Uda Walawe National Park, Sri Lanka. Biological Conservation, 144, 1742–1752.CrossRefGoogle Scholar
  20. Douglas-Hamilton, I. (1972). On the ecology and behaviour of the African elephant. Oxford: University of Oxford.Google Scholar
  21. Dunbar, R. I. M., & Dunbar, P. E. (1975). Social dynamics of gelada baboons. Basel: S. Karger.Google Scholar
  22. Eisenberg, J. F., McKay, G. M., & Seidensticker, J. (1990). Asian elephants. Washington, DC: Friends of the National Zoo and National Zoological Park.Google Scholar
  23. Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215–223.PubMedCrossRefGoogle Scholar
  24. Feh, C., Munkhtuya, B., Enkhbold, S., & Sukhbaatar, T. (2001). Ecology and social structure of the Gobi khulan Equus hemionus subsp in the Gobi B National Park, Mongolia. Biological Conservation, 101, 51–61.CrossRefGoogle Scholar
  25. Fernando, P., & Lande, R. (2000). Molecular genetic and behavioral analysis of social organization in the Asian elephant (Elephas maximus). Behavioral Ecology & Sociobiology, 48, 84–91.CrossRefGoogle Scholar
  26. Fernando, P., Wikramanayake, E., Janaka, H. K., Jayasinghe, L. K. A., Gunawardena, M., Kotagama, S. W., Weerakoon, D. K., & Pastorini, J. (2008). Ranging behavior of the Asian elephant in Sri Lanka. Mammalian Biology, 73, 2–13.Google Scholar
  27. Foster, W. A., & Treherne, J. E. (1981). Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature, 293, 466–467.CrossRefGoogle Scholar
  28. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the USA, 99, 7821–7826.PubMedCrossRefGoogle Scholar
  29. Goward, L., & Prince, S. D. (1995). Transient effects of climate on vegetation dynamics: Satellite observations. Journal of Biogeography, 22, 549–564.Google Scholar
  30. Graw, B., & Manser, M. B. (2007). The function of mobbing in cooperative meerkats. Animal Behaviour, 74, 507–517.CrossRefGoogle Scholar
  31. Grueter, C. C., & van Schaik, C. P. (2010). Evolutionary determinants of modular societies in colobines. Behavioral Ecology, 21, 63–71.CrossRefGoogle Scholar
  32. Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–&.Google Scholar
  33. Hamilton, M. J., Milne, B. T., Walker, R. S., Burger, O., & Brown, J. H. (2007). The complex structure of hunter–gatherer social networks. Proceedings of the Royal Society B, Biological Sciences, 274, 2195–2202.PubMedCrossRefGoogle Scholar
  34. Hegner, R. E., Emlen, S. T., & Demong, N. J. (1982). Spatial-organization of the white-fronted bee-eater. Nature, 298, 264–266.CrossRefGoogle Scholar
  35. Hill, R. A., Bentley, R. A., & Dunbar, R. I. M. (2008). Network scaling reveals consistent fractal pattern in hierarchical mammalian societies. Biology Letters, 4, 748–751.PubMedCrossRefGoogle Scholar
  36. Hohmann, G., & Fruth, B. (2003). Intra- and inter-sexual aggression by bonobos in the context of mating. Behaviour, 140, 1389–1413.CrossRefGoogle Scholar
  37. Kawai, M., Ohsawa, H., Mori, U., & Dunbar, R. (1983). Social organization of gelada baboons: social units and definitions. Primates, 24, 13–24.CrossRefGoogle Scholar
  38. Krause, J. (1993). The effect of Schreckstoff on the shoaling behavior of the minnow—a test of Hamilton’s Selfish Herd Theory. Animal Behaviour, 45, 1019–1024.CrossRefGoogle Scholar
  39. Kummer, H. (1968). Social organization of hamadryas baboons. A field study. Basel: S. Karger.Google Scholar
  40. Kummer, H. (1984). From laboratory to desert and back: a social system of hamadryas baboons. Animal Behaviour, 32, 965–971.CrossRefGoogle Scholar
  41. Lee, P. C. (1987). Allomothering among African elephants. Animal Behavior, 35, 278–291.CrossRefGoogle Scholar
  42. Leimgruber, P., Gagnon, J. B., Wemmer, C., Kelly, D. S., Songer, M. A., & Selig, E. R. (2003). Fragmentation of Asia’s remaining wildlands: implications for Asian elephant conservation. Animal Conservation, 6, 347–359.CrossRefGoogle Scholar
  43. McComb, K., Baker, L., Durant, S. M., Moss, C., & Sayialel, S. (2001). Matriarchs as repositories of social knowledge in African elephants. Science, 292, 491.PubMedCrossRefGoogle Scholar
  44. McComb, K., Shannon, G., Durant, S. M., Sayialel, S., Slotow, R., Poole, J., & Moss, C. (2011). Leadership in elephants: The adaptive value of age. Proceedings of the Royal Society B: Biological Sciences. doi:10.1098/rspb.2011.0168.
  45. McDonald, D. B. (2007). Predicting fate from early connectivity in a social network. Proceedings of the National Academy of Sciences of the USA, 104, 10910–10914.PubMedCrossRefGoogle Scholar
  46. Moss, C. J., & Poole, J. H. (1983). Relationships and social structure of African elephants. In R. A. Hinde (Ed.), Primate social relationships: An integrated approach (pp. 315–325). Oxford: Blackwell.Google Scholar
  47. Rubenstein, D. I., & Hack, M. (2004). Natural and sexual selection and the evolution of multi-level societies: Insights from zebras with comparisons to primates. In P. M. Kapeller & C. V. Schaik (Eds.), Sexual selection in primates: New and comparative perspectives. Cambridge, UK: Cambridge University Press.Google Scholar
  48. Rubenstein, D. I., Sundaresan, S., Fischhoff, I., & Saltz, D. (2007). Social networks in wild asses: Comparing patterns and processes among populations. In A. Stubbe, P. Kaczensky, R. Samjaa, K. Wesche, & M. Stubbe (Eds.), Exploration into the biological resources of Mongolia (pp. 159–176). Martin-Luther-University Halle-Wittenberg.Google Scholar
  49. Shoshani, J., & Tassy, P. (1996). The Proboscidea: Evolution and palaeoecology of elephants and their relatives. Oxford and New York: Oxford University Press.Google Scholar
  50. Silk, J. B. (2007). The adaptive value of sociality in mammalian groups. Philosophical Transactions of the Royal Society B-Biological Sciences, 362, 539–559.Google Scholar
  51. Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrogram by objective methods. Taxon, 11, 33–40.CrossRefGoogle Scholar
  52. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W. H. Freeman.Google Scholar
  53. Sumpter, D., Buhl, J., Biro, D., & Couzin, I. (2008). Information transfer in moving animal groups. In Theory in biosciences (pp. 177–186). Berlin and Heidelberg: Springer.Google Scholar
  54. Sundaresan, S. R., Fischhoff, I. R., Dushoff, J., & Rubenstein, D. I. (2007). Network metrics reveal differences in social organization between two fission–fusion species, Grevy’s zebra and onager. Oecologia, 151, 140–149.PubMedCrossRefGoogle Scholar
  55. Sundaresan, S., Fischhoff, I. R., & Rubenstein, D. I. (2007). Male harassment influences female movements and associations in Grevy’s zebra (Equus grevyi). Behavioral Ecology, 18, 5.CrossRefGoogle Scholar
  56. Sundaresan, S. R., Fischhoff, I. R., & Dushoff, J. (2009). Avoiding spurious findings of nonrandom social structure in association data. Animal Behavior, 7, 1–5.Google Scholar
  57. Symington, M. (1990). Fission-fusion social organization in Ateles and Pan. International Journal of Primatology, 11, 47–61.Google Scholar
  58. Vidya, T. N. C., & Sukumar, R. (2005). Social organization of the Asian elephant (Elephas maximus) in southern India inferred from microsatellite DNA. Journal of Ethology, 23, 205–210.CrossRefGoogle Scholar
  59. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge and New York: Cambridge University Press.CrossRefGoogle Scholar
  60. Wittemyer, G. (2001). The elephant population of Samburu and Buffalo Springs National Reserves, Kenya. African Journal of Ecology, 39, 357–365.CrossRefGoogle Scholar
  61. Wittemyer, G., & Getz, W. M. (2007). Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Animal Behaviour, 73, 671–681.CrossRefGoogle Scholar
  62. Wittemyer, G., Daballen, D. K., Rasmussen, H. B., Kahindi, O., & Douglas-Hamilton, I. (2005). Demographic status of elephants in the Samburu and Buffalo Springs National Reserves, Kenya. African Journal of Ecology, 43, 44–47.CrossRefGoogle Scholar
  63. Wittemyer, G., Douglas-Hamilton, I., & Getz, W. M. (2005). The socioecology of elephants: analysis of the processes creating multitiered social structures. Animal Behaviour, 69, 1357–1371.CrossRefGoogle Scholar
  64. Wittemyer, G., Rasmussen, H. B., & Douglas-Hamilton, I. (2007). Breeding phenology in relation to NDVI variability in free-ranging African elephant. Ecography, 30, 42–50.Google Scholar
  65. Wittemyer, G., Okello, J. B. A., Rasmussen, H. B., Arctander, P., Nyakaana, S., Douglas-Hamilton, I., & Siegismund, H. R. (2009). Where sociality and relatedness diverge: The genetic basis for hierarchical social organization in African elephants. Proceedings of the Royal Society B: Biological Sciences, 276, 3513–3521.PubMedCrossRefGoogle Scholar
  66. Wolf, J. B. W., Mawdsley, D., Trillmich, F., & James, R. (2007). Social structure in a colonial mammal: Unravelling hidden structural layers and their foundations by network analysis. Animal Behaviour, 74, 1293–1302.CrossRefGoogle Scholar
  67. Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262–300.CrossRefGoogle Scholar
  68. Zubair, L., Siriwardhana, M., Chandimala, J., & Yahiya, Z. (2008). Predictability of Sri Lankan rainfall based on ENSO. International Journal of Climatology, 28, 91–101.CrossRefGoogle Scholar
  69. Zuberbühler, K. (2009). Survivor signals: The biology and psychology of animal alarm calling. In M. Naguib, K. Zuberbühler, N. S. Clayton, & V. M. Janik (Eds.), Advances in the study of behavior (pp. 277–322). San Diego: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Elephant Forest and Environment Conservation TrustColombo 5Sri Lanka
  2. 2.Department of Fish, Wildlife, Conservation BiologyColorado State UniversityFort CollinsUSA
  3. 3.Save the ElephantsNairobiKenya

Personalised recommendations