International Journal of Primatology

, Volume 33, Issue 6, pp 1278–1308

Modeling the Biogeography of Fossil Baboons

Article

Abstract

We use a model of modern baboon socio-ecology to explore the behavioral ecology and biogeography of the extinct Plio-Pleistocene baboons (genera Parapapio, Gorgopithecus, Dinopithecus, and Papio). The model is based on the way climate affects the baboons’ time budgets, and focuses on intersite variability in behavior rather than on species-typical patterns of behavior, as most previous approaches have done. We use climate estimates for individual fossil sites based on matching modern habitats using faunal profiles and estimates of individual species’ body masses given in the literature. The model allows us to examine the minimum and maximum sizes of groups that individual species would have been able to support at particular localities, and hence the biogeography of a species on a continental scale. In doing so, the model allows us to examine which variables are most responsible for limiting a species’ ecological and biogeographic flexibility, and through this to explore a species’ capacity for coping with climate change. Feeding time is identified as the main constraint. In general, large-bodied species would have had more difficulty surviving in as wide a range of habitats as smaller-bodied species, and this may explain the limited geographical distribution of large-bodied baboons such as Gorgopithecus and Dinopithecus.

Keywords

Biogeography Fossil papionids Socioeciology Time budget models 

References

  1. Alemseged, Z. (2003). An integrated approach to taphonomy and faunal change in the Shungura Formation (Ethiopia) and its implication for hominid evolution. Journal of Human Evolution, 44, 451–478.PubMedCrossRefGoogle Scholar
  2. Alemseged, Z., Wynn, J. G., Kimbel, W. H., Reed, D., Geraads, D., & Bobe, R. (2005). A new hominin from the Basal Member of the Hadar Formation, Dikika, Ethiopia, and its geological context. Journal of Human Evolution, 49, 499–514.PubMedCrossRefGoogle Scholar
  3. Avery, D. M. (2001). The Plio-Pleistocene vegetation and climate of Sterkfontein and Swartkrans, South Africa, based on micromammals. Journal of Human Evolution, 41, 113–132.PubMedCrossRefGoogle Scholar
  4. Barry, J. C. (1987). Large Carnivores (Canidae, Hyaenidae, Felidae) from Laetoli. In M. D. Leakey & J. Harris (Eds.), Laetoli: A Pliocene site in northern Tanzania (pp. 235–258). Oxford: Clarendon Press.Google Scholar
  5. Barton, R. A., Whiten, A., Strum, S. C., Byrne, R. W., & Simpson, A. J. (1992). Habitat use and resource availability in baboons. Animal Behaviour, 43, 831–844.CrossRefGoogle Scholar
  6. Bettridge, C., Lehmann, J., & Dunbar, R. I. M. (2010). Tradeoffs between time, predation risk and life history, and their implications for biogeography: A systems modelling approach with a primate case study. Ecological Modelling, 221, 777–790.CrossRefGoogle Scholar
  7. Bonnefille, R. (1983). Evidence for a cooler and drier climate in the Ethiopian uplands towards 2.5 Myr ago. Nature, 303, 487–491.CrossRefGoogle Scholar
  8. Brown, F. H., & McDougall, I. (1993). Geologic setting and age. In A. Walker & R. E. Leakey (Eds.), The Nariokotome Homo erectus skeleton. Cambridge: Harvard University Press.Google Scholar
  9. Campisano, C. J., & Feibel, C. S. (2007). Connecting local environmental sequences to global climate patterns: Evidence from the hominin-bearing Hadar Formation, Ethiopia. Journal of Human Evolution, 53, 515–527.PubMedCrossRefGoogle Scholar
  10. Clutton-Brock, T. H., & Harvey, P. H. (1984). Comparative approaches to investigating adaptation. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: An evolutionary approach (2nd ed., pp. 7–29). Oxford: Blackwell.Google Scholar
  11. Codron, D., Luyt, J., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2005). Utilization of savanna-based resources by Plio-Pleistocene baboons. South African Journal of Science, 101, 245–248.Google Scholar
  12. Cowlishaw, G. (1994). Vulnerability to predation in baboon populations. Behaviour, 131, 293–304.CrossRefGoogle Scholar
  13. DeFries, R., Hansen, M., Townshend, J. R. G., Janetos, A. C., & Loveland, T. R. (2000). Continuous fields 1 km tree cover. College Park: The Global Land Cover Facility.Google Scholar
  14. Delson, E., & Dean, D. (1993). Are Papio baringensis R. Leakey, 1969, and P. quadratirostris Iwamoto, 1982, species of Papio or Theropithecus? In N. G. Jablonski (Ed.), Theropithecus: The rise and fall of a primate genus (pp. 125–156). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G., & Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): Estimation and scaling in extinct and extant taxa. Anthropological American Museum of Natural History Anthropology Papers, 83, 1–159.Google Scholar
  16. Demment, M. W., & van Soest, P. J. (1985). A nutritional explanation for body-size patterns in ruminant and nonruminant herbivores. American Naturalist, 125, 641–672.CrossRefGoogle Scholar
  17. Dunbar, R. I. M. (1988). Primate social systems. London: Chapman and Hall.CrossRefGoogle Scholar
  18. Dunbar, R. I. M. (1992a). Time: A hidden constraint on the behavioural ecology of baboons. Behavioural Ecology and Sociobiology, 31, 35–49.CrossRefGoogle Scholar
  19. Dunbar, R. I. M. (1992b). A model of the gelada socioecological system. Primates, 33, 69–83.CrossRefGoogle Scholar
  20. Dunbar, R. I. M. (1992c). Behavioural ecology of the extinct papionins. Journal of Human Evolution, 22, 407–421.CrossRefGoogle Scholar
  21. Dunbar, R. I. M. (1994). Ecological constraints on group size in baboons. In P. Jarman & A. Rossiter (Eds.), Animal societies: Individuals, interactions and social organisation (pp. 221–236). Kyoto: Kyoto University Press.Google Scholar
  22. Dunbar, R. I. M. (1996). Determinants of group size in primates: A general model. In J. Maynard Smith, G. Runciman, & R. Dunbar (Eds.), Evolution of culture and language in primates and humans (pp. 33–57). Oxford: Oxford University Press.Google Scholar
  23. Dunbar, R. I. M., & Dunbar, E. P. (1975). Social organisation of gelada baboons. Basel: Karger.Google Scholar
  24. Dunbar, R., Korstjens, A., & Lehmann, J. (2009). Time as an ecological constraint. Biological Reviews, 84, 413–429.PubMedCrossRefGoogle Scholar
  25. Eck, G. G., & Jablonski, N. G. (1984). A reassessment of the taxonomic status and phyletic relationships of Papio baringensis and Papio quadratirostris (Primates: Cercopithecidae). American Journal of Physical Anthropology, 65, 109–134.CrossRefGoogle Scholar
  26. Eck, G. G., & Jablonski, N. G. (1987). The skull of Theropithecus brumpti compared with those of other species of the genus Theropithecus. In Les faunes Plio-Ple´istoce`nes de la Basse Valle´e de l’Omo (Euthiopie).Tome 3, Cercopithecidae de la Formation de Shungura (pp. 11–122). Cahiers de Pale´ontologie, Travaux de Pale´ontologie Est-Africaine. Paris: CNRS.Google Scholar
  27. Elton, S. (2007). Environmental correlates of the Cercopithecoid radiations. Folia Primatologica, 78, 344–364.CrossRefGoogle Scholar
  28. Fay, J. M., Carroll, R., Kerbis Peterhans, J. C., & Harris, D. (1995). Leopard attack on and consumption of gorillas in the Central African Republic. Journal of Human Evolution, 29, 93–99.CrossRefGoogle Scholar
  29. Fernández-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., & Humphrey, L. (1998). Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution, 34, 137–172.PubMedCrossRefGoogle Scholar
  30. Fleagle, J. (1988). Primate adaptation and evolution. New York: Academic Press.Google Scholar
  31. Folinsbee, K. E. (2008). Evolutionary history and biogeography of Papionin monkeys. Ph.D. thesis, University of Toronto.Google Scholar
  32. Gilbert, C. C. (2008). African Papionin phylogenetic history and Plio-Pleistocene biogeography. Ph.D. thesis, Stony Brook University.Google Scholar
  33. Godfrey, L. R., Petto, A. J., & Sutherland, M. R. (2002). Dental ontogeny and life-history strategies: The case of the giant extinct indroids of Madagascar. In J. M. Plavcan, R. F. Kay, W. L. Jungers, & C. P. van Schaik (Eds.), Reconstructing behaviour in the primate fossil record (pp. 113–158). New York: Kluwer Academic/Plenum Press.Google Scholar
  34. Groves, C. P. (2000). The phylogeny of the Cercopithecoidea. In P. F. Whitehead & C. J. Jolly (Eds.), Old world monkeys (pp. 77–98). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Harcourt, A. H., & Greenberg, J. (2001). Do gorilla females join males to avoid infanticide? A quantitative model. Animal Behaviour, 62, 905–915.CrossRefGoogle Scholar
  36. Hernández Fernández, M., & Vrba, E. S. (2006). Plio-Pleistocene climatic change in the Turkana Basin (East Africa): Evidence from large mammal faunas. Journal of Human Evolution, 50, 595–626.PubMedCrossRefGoogle Scholar
  37. Jarman, P. J. (1974). The social organisation of antelope in relation to their ecology. Behaviour, 48, 215–267.CrossRefGoogle Scholar
  38. Jungers, W. L., Godfrey, L. R., Simons, E. L., Wunderlich, R. E., Richmond, B. G., & Chatrath, P. S. (2002). Ecomorphology and behavior of giant extinct lemurs from Madagascar. In J. M. Plavcan, R. F. Kay, W. L. Jungers, & C. P. van Schaik (Eds.), Reconstructing behaviour in the primate fossil record (pp. 371–411). New York: Kluwer Academic/Plenum Press.Google Scholar
  39. Kay, R. F. (1985). Dental evidence for the diet of Australopithecus. Annual Review of Anthropology, 14, 315–341.CrossRefGoogle Scholar
  40. Kay, R. F., & Cartmill, M. (1977). Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, primates), with a description of a new genus and species. Journal of Human Evolution, 6, 19–53.CrossRefGoogle Scholar
  41. Kleiber, M. (1961). The fire of life: An introduction to animal energetics. New York: John Wiley.Google Scholar
  42. Korstjens, A., & Dunbar, R. I. M. (2007). Time constraints limit group sizes and distribution in red and black-and-white colobus monkeys. International Journal of Primatology, 28, 551–575.CrossRefGoogle Scholar
  43. Korstjens, A., Verhoeckx, I., & Dunbar, R. I. M. (2006). Time as a constraint on group size in spider monkey. Behavioral Ecology and Sociobiology, 60, 683–694.CrossRefGoogle Scholar
  44. Korstjens, A., Lehmann, J., & Dunbar, R. I. M. (2010). Resting time as an ecological constraint on primate biogeography. Animal Behaviour, 79, 361–374.CrossRefGoogle Scholar
  45. Kuman, K., & Clarke, R. J. (2000). Stratigraphy, artefact industries and hominid associations for Sterkfontein, Member 5. Journal of Human Evolution, 38, 827–847.PubMedCrossRefGoogle Scholar
  46. Lee-Thorp, J. A., & Sponheimer, M. (2006). Biogeochemical approaches to investigating hominin diets. Yearbook of Physical Anthropology, 49, 131–148.CrossRefGoogle Scholar
  47. Legates, D. R., & Willmott, C. J. (1990a). Mean seasonal and spatial variability in global surface air temperature. Theoretical and Applied Climatology, 41, 11–21.CrossRefGoogle Scholar
  48. Legates, D. R., & Willmott, C. J. (1990b). Mean seasonal and spatial variability in gauge-corrected global precipitation. International Journal of Climatology, 10, 111–127.CrossRefGoogle Scholar
  49. Lehmann, J., & Dunbar, R. I. M. (2009). Implications of body mass and predation for ape social system and biogeographical distribution. Oikos, 118, 379–390.CrossRefGoogle Scholar
  50. Lehmann, J., Korstjens, A., & Dunbar, R. I. M. (2007a). Fission-fusion social systems as a strategy for coping with ecological constraints: A primate case. Evolutionary Ecology, 21, 613–634.CrossRefGoogle Scholar
  51. Lehmann, J., Korstjens, A., & Dunbar, R. I. M. (2007b). Group size, grooming and social cohesion in primates. Animal Behaviour, 74, 1617–1629.CrossRefGoogle Scholar
  52. Lehmann, J., Korstjens, A., & Dunbar, R. I. M. (2008a). Time management in great apes: Implications for gorilla biogeography. Evolutionary Ecology Research, 10, 515–536.Google Scholar
  53. Lehmann, J., Korstjens, A., & Dunbar, R. I. M. (2008b). Time and distribution: A model of ape biogeography. Ethology Ecology and Evolution, 20, 337–359.CrossRefGoogle Scholar
  54. Lycett, J. E., Henzi, S. P., & Barrett, L. (1998). Maternal investment in mountain baboons and the hypothesis of reduced care. Behavioral Ecology and Sociobiology, 42, 49–56.CrossRefGoogle Scholar
  55. McDougall, I. A. N., & Feibel, C. S. (1999). Numerical age control for the Miocene-Pliocene succession at Lothagam, a hominoid-bearing sequence in the northern Kenya Rift. Journal of the Geological Society, 156, 731–745.CrossRefGoogle Scholar
  56. McKee, J. K., Thackeray, J. F., & Berger, L. R. (1995). Faunal assemblage seriation of southern African Pliocene and Pleistocene fossil deposits. American Journal of Physical Anthropology, 96, 235–250.PubMedCrossRefGoogle Scholar
  57. McNab, B. K. (1963). Bioenergetics and the determination of home range size. American Naturalist, 97, 133–140.CrossRefGoogle Scholar
  58. Milton, K., & May, M. (1976). Body weight, diet and home range area in primates. Nature, 259, 459–462.PubMedCrossRefGoogle Scholar
  59. Moggi-Cecchi, J., Grine, F. E., & Tobias, P. V. (2006). Early hominid dental remains from Members 4 and 5 of the Sterkfontein Formation (1966–1996 excavations): Catalogue, individual associations, morphological descriptions and initial metrical analysis. Journal of Human Evolution, 50, 239–328.PubMedCrossRefGoogle Scholar
  60. Nunn, C. L., & van Schaik, C. P. (2002). A comparative approach to reconstructing the socioecology of extinct primates. In J. M. Plavcan, R. F. Kay, W. L. Jungers, & C. P. van Schaik (Eds.), Reconstructing behaviour in the primate fossil record (pp. 159–215). New York: Kluwer Academic/Plenum Press.Google Scholar
  61. Peters, R. H. (1983). The ecological relevance of body size. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 1–26.CrossRefGoogle Scholar
  63. Shipman, P., & Harris, J. M. (1988). Habitat preference and paleoecology of Australopithecus boisei in Eastern Africa. In F. E. Grine (Ed.), Evolutionary history of the 'robust' Australopithecines (pp. 343–381). New York: Aldine.Google Scholar
  64. Susman, R. L., & Brain, T. M. (1988). New first metatarsal (SKX 5017) from Swartkrans and the gait of Paranthropus robustus. American Journal of Physical Anthropology, 77, 7–15.PubMedCrossRefGoogle Scholar
  65. Tooby, J., & DeVore, I. (1987). The reconstruction of hominid behavioral evolution through strategic modelling. In W. G. Kinzey (Ed.), The evolution of human behavior: Primate models (pp. 183–237). Albany: SUNY Press.Google Scholar
  66. Treves, A., & Palmqvist, P. (2007). Reconstructing hominin interactions with mammalian carnivores (6.0–1.8 Ma). In K. A. I. Nekaris & S. L. Gursky (Eds.), Primate anti-predator strategies (pp. 355–381). New York: Springer.CrossRefGoogle Scholar
  67. Turner, A., & Antón, M. (1996). The giant hyaena, Pachycrocuta brevirostris (Mammalia, Carnivora, Hyaenidae). Geobios, 29, 455–468.CrossRefGoogle Scholar
  68. Uphyrkina, O., Johnson, W. E., Quigley, H., Miquelle, D., Marker, L., Bush, M., et al. (2001). Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus. Molecular Ecology, 10, 2617–2633.PubMedCrossRefGoogle Scholar
  69. Vrba, E. S. (1975). Some evidence of chronology and palaeoecology of Sterkfontein, Swartkrans and Kromdraai from the fossil Bovidae. Nature, 254, 301–304.CrossRefGoogle Scholar
  70. Werdelin, L., & Lewis, M. (2005). Plio-Pleistocene Carnivora of eastern Africa: Species richness and turnover patterns. Zoological Journal of the Linnean Society, 144, 121–144.CrossRefGoogle Scholar
  71. Wesselman, H. B. (1984). The Omo micromammals: Systematics and paleoecology of early man sites from Ethiopia. Basel: S. Karger.Google Scholar
  72. Wesselman, H. B. (1995). Of mice and almost-men: Regional paleoecology and human evolution in the Turkana Basin. In E. S. Vrba, G. H. Denton, T. C. Partridge, & L. H. Burckle (Eds.), Paleoclimate and evolution, with emphasis on human origins (pp. 356–368). New Haven: Yale University Press.Google Scholar
  73. Willems, E., & Hill, R. A. (2009). A critical assessment of two species distribution models taking vervet monkeys (Cercopithecus aethiops) as a case study. Journal of Biogeography, 36, 2300–2312.CrossRefGoogle Scholar
  74. Willmott, C. J., & Matsuura, K. (2001). Terrestrial air temperature and precipitation: Monthly and annual climatologies (Version 3.02). http://climate.geog.udel.edu/~climate/
  75. Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262–300.CrossRefGoogle Scholar
  76. Wynn, J. G. (2004). Influence of Plio-Pleistocene aridification on human evolution: Evidence from paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropology, 123, 106–118.PubMedCrossRefGoogle Scholar
  77. Wynn, J. G., Alemseged, Z., Bobe, R., Geraads, D., Reed, D., & Roman, D. C. (2006). Geological and palaeontological context of a Pliocene juvenile hominin at Dikika, Ethiopia. Nature, 443, 332–336.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.British Academy Centenary Research Project, Institute of Cognitive & Evolutionary AnthropologUniversity of OxfordOxfordUK

Personalised recommendations