International Journal of Primatology

, Volume 32, Issue 6, pp 1367–1382 | Cite as

No Evidence of Coordination Between Different Subgroups in the Fission–Fusion Society of Spider Monkeys (Ateles geoffroyi)

  • Gabriel Ramos-Fernández
  • Braulio Pinacho-Guendulain
  • Adán Miranda-Pérez
  • Denis Boyer
Article

Abstract

Flexibility in spatial cohesion allows species with high fission–fusion dynamics to exploit variable habitats and decrease the costs of feeding competition. However, coordination among highly dispersed group members becomes problematic. In spider monkeys (Ateles spp.), individuals can spread over wide areas, forming several subgroups that appear to travel independently from each other. To explore their relative travel patterns, we compare the distance between different subgroups with the distance predicted by a null model of independent travel. Observations of distance between subgroups come from simultaneous follows of ≥2 subgroups in 2 different groups of spider monkeys in Punta Laguna, Mexico. We estimated space use using the kernel method, which produces areas with a given probability of presence of the subgroups, based on the frequency with which they were observed in each location. The null model consisted of the frequency distribution of distances between randomly chosen pairs of points within the home range, choosing each point independently with a probability proportional to the corresponding observed probability of presence. In all cases, the observed distances between subgroups were very close to those predicted by the null model, which suggests that subgroups do not coordinate their relative travel patterns. Also, the distance separating 2 individuals when in different subgroups was not affected by their sex or association index. These findings underscore the low cohesiveness between group members in species with high fission–fusion dynamics and challenge us to find the mechanisms by which groups maintain their social structure.

Keywords

Ateles geoffroyi Group coordination Fission–fusion Null models Spatial cohesion 

References

  1. Asensio, N., Korstjens, A. H., Schaffner, C. M., & Aureli, F. (2008). Intragroup aggression, fission–fusion dynamics and feeding competition in spider monkeys. Behaviour, 145, 983–1001.CrossRefGoogle Scholar
  2. Asensio, N., Korstjens, A. H., & Aureli, F. (2009). Fissioning minimizes ranging costs in spider monkeys: a multiple-level approach. Behavioral Ecology and Sociobiology, 63, 649–659.CrossRefGoogle Scholar
  3. Aureli, F., & Schaffner, C. M. (2007). Aggression and conflict management at fusion in spider monkeys. Biology Letters, 3, 147–149.PubMedCrossRefGoogle Scholar
  4. Aureli, F., Schaffner, C. M., Boesch, C., Bearder, S. K., Call, J., Chapman, C. A., et al. (2008). Fission-fusion dynamics: new research frameworks. Current Anthropology, 49, 627–654.CrossRefGoogle Scholar
  5. Barrett, L., & Lowen, C. B. (1998). Random walks and the gas model: spacing behaviour of grey-cheeked mangabeys. Functional Ecology, 12, 857–865.CrossRefGoogle Scholar
  6. Barrett, L., Henzi, S. P., & Dunbar, R. I. M. (2003). Primate cognition: from “what now?” to “what if?”. Trends in Cognitive Sciences, 7, 494–497.PubMedCrossRefGoogle Scholar
  7. Cairns, S. J., & Schwager, S. J. (1987). A comparison of association indices. Animal Behaviour, 35, 1454–1469.CrossRefGoogle Scholar
  8. Chapman, C. A., Chapman, L. J., & Wrangham, R. (1995). Ecological constraints on group size: an analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology, 36, 59–70.CrossRefGoogle Scholar
  9. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51, 661–703.CrossRefGoogle Scholar
  10. De Solla, S. R., Bonduriansky, R., & Brooks, R. J. (1999). Eliminating autocorrelation reduces biological relevance of home range estimates. Journal of Animal Ecology, 68, 221–234.CrossRefGoogle Scholar
  11. Eisenberg, J. F. (1976). Communication mechanisms and social integration in the black spider monkey, Ateles fuscipes robustus. Smithsonian Contributions to Zoology, 213, 1–108.CrossRefGoogle Scholar
  12. Frey, J. (2009). Confidence bands of the CDF when sampling from a finite population. Computational Statistics and Data Analysis, 53, 4126–4132.CrossRefGoogle Scholar
  13. Garcia-Frapolli, E., Ayala-Orozco, B., Bonilla-Moheno, M., Espadas-Manrique, C., & Ramos-Fernandez, G. (2007). Biodiversity conservation, traditional agriculture and ecotourism: land cover/land use change projections for a natural protected area in the northeastern Yucatan Peninsula, Mexico. Landscape and Urban Planning, 83, 137–153.CrossRefGoogle Scholar
  14. Hemson, G., Johnson, P., South, A., Kenward, R., Ripley, R., & MacDonald, D. (2005). Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home-range analyses with least-squares cross-validation. Journal of Animal Ecology, 74, 455–463.CrossRefGoogle Scholar
  15. Hutchinson, J. M. C., & Waser, P. M. (2007). Use, misuse and extensions of “ideal gas” models of animal encounter. Biological Reviews, 82, 335–359.PubMedCrossRefGoogle Scholar
  16. Kerth, G. (2010). Group decision-making in animal societies. In P. M. Kappeler (Ed.), Animal behaviour: Evolution and mechanisms (pp. 241–266). Heidelberg: Springer.CrossRefGoogle Scholar
  17. Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell, M. S., et al. (2010). The home-range concept: are traditional estimators still relevant with modern telemetry technology? Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2221–2231.CrossRefGoogle Scholar
  18. Melnick, D., & Pearl, M. (1987). Cercopithecines in multimale groups: Genetic diversity and population structure. In B. Smuts, D. L. Cheney, R. Seyfarth, R. Wrangham, & T. Struhsaker (Eds.), Primate societies (pp. 121–134). Chicago: University of Chicago Press.Google Scholar
  19. Polansky, L., & Wittemyer, G. (2010). A framework for understanding the architecture of collective movements using pairwise analyses of animal movement data. Interface Journal of the Royal Society, 8, 322–333.CrossRefGoogle Scholar
  20. Ramos-Fernandez, G. (2005). Vocal communication in a fission-fusion society: do spider monkeys stay in touch with close associates? International Journal of Primatology, 26, 1077–1092.CrossRefGoogle Scholar
  21. Ramos-Fernandez, G. (2008). Communication in spider monkeys: The function and mechanisms underlying the use of the whinny. In C. J. Campbell (Ed.), Spider monkeys: The behavior, ecology and evolution of the genus Ateles (pp. 138–154). Cambridge, UK: Cambridge University Press.Google Scholar
  22. Ramos-Fernandez, G., Boyer, D., & Gomez, V. P. (2006). A complex social structure with fission–fusion properties can emerge from a simple foraging model. Behavioral Ecology and Sociobiology, 60, 536–549.CrossRefGoogle Scholar
  23. Ramos-Fernandez, G., Boyer, D., Aureli, F., & Vick, L. G. (2009). Association networks in spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology, 63, 999–1013.CrossRefGoogle Scholar
  24. Rodgers, A. R., Carr, A. P., Beyer, H. L., Smith, L., & Kie, J. G. (2007). HRT: Home Range Tools for ArcGIS version 1.1. Centre for Northern Forest Ecosystem Research, Ontario, Canada.Google Scholar
  25. Shimooka, Y. (2005). Sexual differences in ranging of Ateles belzebuth belzebuth at La Macarena, Colombia. International Journal of Primatology, 26, 385–406.CrossRefGoogle Scholar
  26. Shimooka, Y., Campbell, C. J., Di Fiore, A., Felton, A., Izawa, K., Link, A., et al. (2008). Demography and group composition of spider monkeys. In C. J. Campbell (Ed.), Spider monkeys: The behavior, ecology and evolution of the genus Ateles (pp. 329–348). Cambridge, UK: Cambridge University Press.Google Scholar
  27. Shimooka, Y., Link, A., Ramirez, M., & Di Fiore, A. (2008b). Spatial distribution of wild spider monkeys in fission-fusion societies: Simultaneous follows of two individuals using GPS. In XXIInd Congress of the International Primatological Society. Edinburgh, Scotland. 3–8 August, 2008.Google Scholar
  28. Stammbach, E. (1987). Desert, forest and montane baboons: Multilevel societies. In B. Smuts, D. L. Cheney, R. Seyfarth, R. Wrangham, & T. Struhsaker (Eds.), Primate societies (pp. 121–134). Chicago: University of Chicago Press.Google Scholar
  29. Symington, M. M. (1988a). Food competition and foraging party size in the black spider monkey (Ateles paniscus chamek). Behaviour, 105, 117–134.CrossRefGoogle Scholar
  30. Symington, M. M. (1988b). Demography, ranging patterns, and activity budgets of black spider monkeys (Ateles paniscus chamek) in the Manu National Park, Peru. American Journal of Primatology, 15, 45–67.CrossRefGoogle Scholar
  31. Symington, M. M. (1990). Fission-fusion social organization in Ateles and Pan. International Journal of Primatology, 11, 47–61.CrossRefGoogle Scholar
  32. Valero, A., & Byrne, R. W. (2007). Spider monkey ranging patterns in Mexican subtropical forest: do travel routes reflect planning? Animal Cognition, 10, 305–15.PubMedCrossRefGoogle Scholar
  33. van Roosmalen, M., & Klein, L. (1987). The spider monkeys, genus Ateles. In R. A. Mittermeier & A. B. Rylands (Eds.), Ecology and behavior of neotropical primates (pp. 455–537). Washington, DC: World Wildlife Fund.Google Scholar
  34. Wallace, R. (2008). Factors influencing spider monkey habitat use and ranging patterns. In C. J. Campbell (Ed.), Spider monkeys: The behavior, ecology and evolution of the genus Ateles (pp. 138–154). Cambridge, UK: Cambridge University Press.Google Scholar
  35. Waser, P. M. (1976). Cerococebus albigena: site attachment, avoidance, and intergroup spacing. American Naturalist, 110, 911–935.CrossRefGoogle Scholar
  36. Wilensky, U. (1999). NetLogo, version 4.1.2. Center for Connected Learning and Computer-Based Modeling, Northwestern University.Google Scholar
  37. Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70, 164–168.CrossRefGoogle Scholar
  38. Worton, B. J. (1995). Using Monte Carlo simulation to evaluate kernel-based home range estimators. Journal of Wildlife Management, 59, 794–800.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gabriel Ramos-Fernández
    • 1
    • 2
  • Braulio Pinacho-Guendulain
    • 1
  • Adán Miranda-Pérez
    • 2
    • 3
  • Denis Boyer
    • 2
    • 3
  1. 1.Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad OaxacaInstituto Politécnico NacionalSanta Cruz XoxocotlánMexico
  2. 2.Centro de Ciencias de la Complejidad, Torre de IngenieríaUniversidad Nacional Autónoma de México (UNAM)México D.F.Mexico
  3. 3.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico

Personalised recommendations