International Journal of Primatology

, Volume 32, Issue 4, pp 901–913 | Cite as

Gray-brown Mouse Lemurs (Microcebus griseorufus) as an Example of Distributional Constraints through Increasing Desertification

  • Yvonne Eva-Maria Barbara Bohr
  • Peggy Giertz
  • Yedidya Rakotomalala Ratovonamana
  • Jörg Ulrich Ganzhorn


Climate change will impose new constraints on the distribution of species through desertification. Small-scale endemists common in biodiversity hotspots such as Madagascar are especially threatened. Among them are the gray-brown mouse lemurs (Microcebus griseorufus), which occupy the driest habitats in Madagascar of all Microcebus spp. We studied impacts of aridity on this species to identify critical factors for distributional limits. Accordingly, we compared populations of 2 adjacent habitats that differ in their humidity levels. We found that the more humid habitat provided more high-quality food and maintained a higher population density of Microcebus griseorufus, with individuals in better condition compared to the drier habitat. At the end of the wet, but not in the dry season, Microcebus griseorufus adjusted its home range size to local food plant density, which indicates that individuals optimize food intake in the wet season to prepare for the dry season. We found a negative exponential relationship between food plant density and home range size, which suggests an upper limit for the size of home ranges. According to this relationship, individuals from the drier habitat could not compensate for reduced food availability by enlarging their home range beyond this threshold. Thus, in case of declining food availability during the wet season due to a generally drier climate, individuals will not be able to extend their home ranges to include more food resources, and hence to accumulate enough fat reserves for the dry season. In consequence, they will have to migrate toward more mesic refugia. Migration, however, requires habitat connectivity, which is scarce in Madagascar’s largely anthropogenic and heavily fragmented landscape. Our data suggest that upper limits in home range sizes can limit a species’ ability to adapt to increasing aridity.


Aridity Climate change Habitat quality Madagascar Microendemism 



We conducted this study within the Accord de Collaboration between Madagascar National Parks (MNP, formerly ANGAP), the University of Antananarivo, and the University of Hamburg. We thank MNP, Mme Ch. Andrianarivo, Dr. J. Rakotomala, D. Rakotomalala, D. Rakotondravony, and the late O. Ramilijaona for their collaboration and support. We acknowledge the authorization and support of this study by the Ministère de l’Environement, des Eaux et Forêts et du Tourisme, MNP, and the University of Antananarivo. In Antananarivo, J. Rakotondranary and T. Andrianasolo managed bureaucratic affairs. S. Kobbe, G. A. Rakoto Ramambason, Edson, Fisy, and Antsara provided important assistance in the field. We thank the editor-in-chief, Dr. J. Setchell, and 2 anonymous reviewers for their comments that greatly improved the manuscript. We also thank Ms. Terry Kornak for copyediting and proofreading our manuscript. The study received financial support from DAAD, DFG (Ga 342/15), VW Foundation, and WWF Germany.


  1. Andriatsimietry, R., Goodman, S. M., Razafimahatratra, E., Jeglinski, J. W. E., Marquard, M., & Ganzhorn, J. U. (2009). Seasonal variation in the diet of Galidictis grandidieri Wozencraft, 1986 (Carnivora: Eupleridae) in a sub-arid zone of extreme Southwestern Madagascar. Journal of Zoology, 279, 410–415.CrossRefGoogle Scholar
  2. Dammhahn, M., & Kappeler, P. M. (2008). Comparative feeding ecology of sympatric Microcebus berthae and Microcebus murinus. International Journal of Primatology, 29, 1567–1589.CrossRefGoogle Scholar
  3. Dausmann, K. (2010). An (opposable) thumbs-up for hibernation – hypometabolism in primates. In J. Masters, M. Gamba, & F. Génin (Eds.), Leaping ahead: Advances in prosimian biology. New York: Springer. In press.Google Scholar
  4. Davies, N. B., & Houston, A. I. (1984). Territory economics. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology (pp. 148–169). Oxford: Blackwell Scientific Publications.Google Scholar
  5. Dollar, L., Ganzhorn, J. U., & Goodman, S. M. (2007). Primates and other prey in the seasonally variable diet of Cryptoprocta ferox in the dry deciduous forest of Western Madagascar. In S. Gursky & K. A. Nekaris (Eds.), Primate anti-predator strategies (pp. 63–76). New York: Springer.CrossRefGoogle Scholar
  6. Donque, G. (1975). Contribution géographique à l'étude du climat de Madagascar. Antananarivo: Nouvelle Imprimerie des Arts Graphiques.Google Scholar
  7. ESRI (1992–2000). ArcView 3.2a. Redlands: ESRI (Environmental Systems Research Institute)Google Scholar
  8. Fleming, T. H. (1988). The short-tailed fruit bat – a study in plant-animal interactions. Chicago: The University of Chicago Press.Google Scholar
  9. Ganzhorn, J. U. (2002). Distribution of a folivorous lemur in relation to seasonally varying food resources: Integrating quantitative and qualitative aspects of food characteristics. Oecologia, 131, 427–435.CrossRefGoogle Scholar
  10. Ganzhorn, J. U., Arrigo-Nelson, S., Boinski, S., Bollen, A., Carrai, V., Derby, A., et al. (2009). Possible fruit protein effects on primate communities in Madagascar and the neotropics. PLoS ONE, 4, doi:10.1371/journal.pone.0008253
  11. Ganzhorn, J. U., Klaus, S., Ortmann, S., & Schmid, J. (2003). Adaptations to seasonality: Some primate and non-primate examples. In P. M. Kappeler & M. E. Pereira (Eds.), Primate life histories and socioecology (pp. 132–148). Chicago: University of Chicago Press.Google Scholar
  12. Ganzhorn, J. U., Lowry, P. P., II, Schatz, G. E., & Sommer, S. (2001). The biodiversity of Madagascar: One of the world's hottest hotspots on its way out. Oryx, 35, 346–348.Google Scholar
  13. Génin, F. (2008). Life in unpredictable environments: First investigation of the natural history of Microcebus griseorufus. International Journal of Primatology, 29, 303–321.CrossRefGoogle Scholar
  14. Génin, F. G. S., Masters, J. C., & Ganzhorn, J. U. (2010). Gummivory in cheirogaleids: Primitive retention or adaptation to hypervariable environments? In A. M. Burrows & L. T. Nash (Eds.), The evolution of exudativory in primates (pp. 123–140). New York: Springer.CrossRefGoogle Scholar
  15. Gligor, M., Ganzhorn, J. U., Rakotondravony, D., Ramilijaona, O. R., Razafimahatratra, E., Zischler, H., et al. (2009). Hybridization between mouse lemurs in an ecological transition zone in Southern Madagascar. Molecular Ecology, 18, 520–533.PubMedCrossRefGoogle Scholar
  16. Hannah, L., Dave, R., Lowry, P. P., Andelman, S., Andrianarisata, M., Andriamaro, L., et al. (2008). Climate change adaptation in Madagascar. Biological Letters, 4, 590–594. doi: 10.1098/rsbl.2008.0270.CrossRefGoogle Scholar
  17. Harper, G., Steininger, M., Tucker, C., Juhn, D., & Hawkins, F. (2007). Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation, 34, 325–333.CrossRefGoogle Scholar
  18. Hemingway, C. A., & Bynum, N. (2005). The influence of seasonality on primate diet and ranging. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates: Studies of living and extinct human and non-human primates (pp. 57–104). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Hewitson, B. C., & Crane, R. G. (2006). Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. International Journal of Climatology, 26, 1315–1337.CrossRefGoogle Scholar
  20. Heymann, E. W., & Smith, A. C. (1999). When to feed on gums: Temporal patterns of gummivory in wild tamarins, Saguinus mystax and Saguinus fuscicollis (Callitrichidae). Zoo Biology, 18, 459–471.CrossRefGoogle Scholar
  21. Hladik, C. M., Charles-Dominique, P., & Petter, J. J. (1980). Feeding strategies of five nocturnal prosimians in the dry forest of the west coast of Madagascar. In P. Charles-Dominique, H. M. Cooper, A. Hladik, C. M. Hladik, E. Pages, G. F. Pariente, et al. (Eds.), Nocturnal Malagasy primates: Ecology, physiology and behavior (pp. 41–73). New York: Academic Press.Google Scholar
  22. Hooge, P. N., & Eichenlaub, B. (2000). Animal movement extension to ArcView, version 2.0. Anchorage: Alaska Science Center – Biological Science Office, U.S. Geological SurveyGoogle Scholar
  23. Ingram, J. C., & Dawson, T. P. (2005). Climate change impacts and vegetation response on the island of Madagascar. Philosophical Transactions of the Royal Society A, 363, 55–59.CrossRefGoogle Scholar
  24. Irwin, M. T., Wright, P. C., Birkinshaw, C., Fisher, B. L., Gardner, C. J., Glos, J., et al. (2010). Patterns of species change in anthropogenically disturbed forests of Madagascar. Biological Conservation, 143, 2351–2362.CrossRefGoogle Scholar
  25. Janson, C., & Verdolin, J. (2005). Seasonality of primate births in relation to climate. In D. K. Brockman & C. P. van Schaik (Eds.), Tropical fruits and frugivores: The search for strong interactors (pp. 307–350). Cambridge: Cambridge University Press.Google Scholar
  26. Kobbe, S., Ganzhorn, J. U., & Dausmann, K. H. (2010). Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). Journal of Comparative Physiology B. doi: 10.1007/s00360-010-0507-5.Google Scholar
  27. Koenig, A., Borries, C., Chalise, M. K., & Winkler, P. (1997). Ecology, nutrition and the timing of reproductive events in an Asian primate, the Hanuman langur (Presbytis entellus). Journal of Zoology, 243, 215–235.CrossRefGoogle Scholar
  28. Kremen, C., Cameron, A., Moilanen, A., Phillips, S. J., Thomas, C. D., Beentje, H., et al. (2008). Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science, 320, 222–226.PubMedCrossRefGoogle Scholar
  29. Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L., & Hannah, L. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20, 538–548.PubMedCrossRefGoogle Scholar
  30. Milton, K., & May, M. L. (1976). Body weight, diet and home range area in primates. Nature, 259, 459–462.PubMedCrossRefGoogle Scholar
  31. Mittermeier, R. A., Ganzhorn, J. U., Konstant, W. R., Glander, K., Tattersall, I., Groves, C. P., et al. (2008). Lemur diversity in Madagascar. International Journal of Primatology, 29, 1607–1656.CrossRefGoogle Scholar
  32. Moat, J., & Smith, P. (2007). Atlas of the vegetation of Madagascar. Atlas de la végétation de Madagascar. Kew: Kew Publishing, Royal Botanic Gardens.Google Scholar
  33. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.PubMedCrossRefGoogle Scholar
  34. Nowack, J., Mzilikazi, N., Dausmann, K. H. (2010). Torpor on demand: Heterothermy in the non-lemur primate Galago moholi. PLoS ONE, 5, doi:10.1371/journal.pone.0010797
  35. Pereira, M. E., Strohecker, R. A., Cavigelli, S. A., Hughes, C. L., & Pearson, D. D. (1999). Metabolic strategy and social behavior in Lemuridae. In B. Rakotosamimanana, H. Rasamimanana, J. U. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 93–118). New York: Kluwer Academic/Plenum Press.CrossRefGoogle Scholar
  36. Phillips, G. O. (1998). Acacia gum (Gum Arabic): A nutritional fibre; metabolism and calorific value. Food Additives and Contaminants, 15, 251–264.PubMedGoogle Scholar
  37. Radespiel, U., Reimann, W. E., Rahelinirina, M., & Zimmermann, E. (2006). Feeding ecology of sympatric mouse lemur species in Northwestern Madagascar. International Journal of Primatology, 27, 311–321.CrossRefGoogle Scholar
  38. Rakotondranary, J., Ratovonamana, Y. R., Ganzhorn, J. U. (2011). Distributions et caractéristiques des habitats de Microcebus griseorufus (Cheirogaleidae) dans le Parc National de Tsimanampetsotsa (Sud-ouest de Madagascar). Malagasy Nature, 4.Google Scholar
  39. Rasoloarison, R. M., Rasolonandrasana, B. P. N., Ganzhorn, J. U., & Goodman, S. M. (1995). Predation on vertebrates in the Kirindy Forest, Western Madagascar. Ecotropica, 1, 59–65.Google Scholar
  40. Rasoma, J., & Goodman, S. M. (2007). Food habits of the Barn Owl (Tyto alba) in spiny bush habitat of arid Southwestern Madagascar. Journal of Arid Environments, 69, 537–543.CrossRefGoogle Scholar
  41. Richard, A. F., Dewar, R. E., Schwartz, M., & Ratsirarson, J. (2000). Mass change, environmental variability and female fertility in wild Propithecus verreauxi. Journal of Human Evolution, 39, 381–391.PubMedCrossRefGoogle Scholar
  42. SAS Institute (1989–2007). JMP 7.0. Cary: SAS InstituteGoogle Scholar
  43. Shoo, L. P. (2010). Planning for biodiversity in future climates. Science, 327, 1452–1452.PubMedCrossRefGoogle Scholar
  44. Shoo, L. P., Storlie, C., Vanderwal, J., Little, J., & Williams, S. E. (2010). Targeted protection and restoration to conserve tropical biodiversity in a warming world. Global Change Biology. doi: 10.1111/j.1365-2486.2010.02218.x.Google Scholar
  45. Tadross, M., Randriamarolaza, L., Rabefitia, Z., & Zheng, K. Y. (2008). Climate change in Madagascar; recent past and future. Washington: World Bank. Scholar
  46. Weisrock, D. W., Rasoloarison, R. M., Fiorentino, I., Ralison, J. M., Goodman, S. M., Kappeler, P. M., et al. (2010). Delimiting species without nuclear monophyly in Madagascar’s mouse lemurs. PLoS ONE, 5, doi:10.1371/journal.pone.0009883
  47. Wilmé, L., Goodman, S. M., & Ganzhorn, J. U. (2006). Biogeographic evolution of Madagascar's microendemic biota. Science, 312, 1063–1065.PubMedCrossRefGoogle Scholar
  48. Wright, P. C. (1999). Lemur traits and Madagascar ecology: Coping with an island environment. Yearbook of Physical Anthropology, 42, 31–72.CrossRefGoogle Scholar
  49. Wright, P. C., Razafindratsita, V. R., Pochron, S. T., & Jernvall, J. (2005). The key to Madagascar frugivores: The search for strong indicators. In J. L. Dew & J. P. Boubli (Eds.), Tropical fruits and frugivores (pp. 121–138). Dordrecht: Springer.CrossRefGoogle Scholar
  50. Yoder, A. D., Burns, M. M., & Génin, F. (2002). Molecular evidence of reproductive isolation in sympatric sibling species of mouse lemurs. International Journal of Primatology, 23, 1335–1343.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yvonne Eva-Maria Barbara Bohr
    • 1
  • Peggy Giertz
    • 1
  • Yedidya Rakotomalala Ratovonamana
    • 2
  • Jörg Ulrich Ganzhorn
    • 1
  1. 1.Department of Animal Ecology and ConservationUniversity of HamburgHamburgGermany
  2. 2.Département de Biologie et Ecologie Végétale, Faculté des SciencesUniversité d’AntananarivoAntananarivoMadagascar

Personalised recommendations