Advertisement

International Journal of Primatology

, Volume 31, Issue 5, pp 863–886 | Cite as

Exploring New Areas: How Important is Long-Term Spatial Memory for Mangabey (Lophocebus albigena johnstonii) Foraging Efficiency?

  • Karline R. L. JanmaatEmail author
  • Rebecca L. Chancellor
Article

Abstract

Studies of primate foraging efficiency during the exploration of new areas can provide important insights into the adaptive value of long-term spatial memory. After 6 yr of observation of a group of gray-cheeked mangabeys (Lophocebus albigena johnstonii) in Kibale National Park, Uganda, we observed exploration of a new area, followed 7 mo later by a group split. We recorded their ranging and foraging behavior for 22 mo after the first exploration. Controlling for weather variables, we found that mangabeys moved longer daily travel distances, explored more area per day, and had larger group spreads in the new area compared to the old area in both parent and daughter groups. The increase in search swath in the new area likely enabled the monkeys to counteract their lack of knowledge of food locations in the new area, as the efficiency in finding fruit in general did not differ between the old and new areas. We did, however, find a lower efficiency in finding fruit from preferred fig trees whose edibility could not be assessed by visual cues in the new area. Fig finding efficiency remained lower, even when we controlled for potential differences in fig density. In addition, mangabeys traveled and foraged less often on the ground in the new compared to the old area. However, when the monkeys became more familiar with the new area, terrestrial behavior increased. Our results are consistent with the hypothesis that when monkeys move into an area in which they have no experience, an absence of knowledge acquired via long-term spatial memory decreases their foraging efficiency.

Keywords

Explorative ranging Foraging efficiency Gray-cheeked mangabey Long-term spatial memory 

Notes

Acknowledgments

The Wenner-Gren and Leakey Foundation, the University of St. Andrews’ School of Psychology, the Schure-Bijerinck-Popping Foundation of the KNAW, the Stichting Kronendak, the Dobberke Stichting voor Vergelijkende Psychology, the Lucie Burger Stichting, and the Foundation Doctor Catharine van Tussenbroek provided funding to K. R. L. Janmaat. The Leakey Foundation and the University of California, Davis Department of Anthropology provided funding to R. L. Chancellor. We thank the Office of the President, the Uganda National Council for Science and Technology, the Uganda Wildlife Authority, the Makerere University Biological Field Station, and the Kibale Fish and Monkey Project, C. A. Chapman in particular, for logistic support, permission to conduct research in Kibale National Park, and the rainfall and temperature data needed to conduct our analyses. We thank W. Olupot and G. Arlet for sending us their ranging data and for training our assistants. We thank R. Meijer, L. B. Prevot, D. C. M. Wright, J. Rusoke, P. Irumba, R. Kaserengenyu, S. Katusabe, and R. Sabiiti for invaluable assistance in the field. We thank L. A. Isbell, K. Zuberbühler, C. H. Janson, G. Brown, 3 anonymous reviewers, and P. M. Waser in particular for comments and suggestions that significantly improved earlier drafts of the manuscript.

Supplementary material

10764_2010_9433_Fig6_ESM.jpg (3.5 mb)
ESM 1

(JPEG 3555 kb)

References

  1. Altmann, S. A., & Altmann, J. (1970). Baboon ecology: African field research. Basel: Karger.Google Scholar
  2. Aronsen, G. P. (2004). Locomotor energetics and forest canopy variation: implications for conservation and management. Folia Primatologica Supplement, 1, 233.Google Scholar
  3. Balda, R. P. & Kamil, A. C. (1998). The ecology and evolution of spatial memory in corvids of the Southwestern USA: The perplexing pinyon jay. In R. O. Balda, I. M. Pepperberg & A. C. Kamil (Eds.), Animal cognition in nature: The convergence of psychology and biology in laboratory and field (pp. 29–64). San Diego, CA: Academic Press.Google Scholar
  4. Barrett, L. (1995). Foraging strategies, ranging patterns and territoriality among gray-cheeked mangabeys in Kibale forest, Western Uganda. Ph.D. thesis, University College London.Google Scholar
  5. Bronikowski, M., & Altmann, J. (1996). Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behavioral Ecology and Sociobiology, 39, 11–25.CrossRefGoogle Scholar
  6. Brown, C. (2001). Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Animal Cognition, 4, 109–113.CrossRefGoogle Scholar
  7. Chalmers, N. R. (1968). Group composition, ecology and daily activities of free living mangabeys in Uganda. Folia Primatologica, 8, 247–262.CrossRefGoogle Scholar
  8. Chapman, C. A., Chapman, L. J., Wrangham, R., Isabirye-Basuta, G., & Ben-David, K. (1997). Spatial and temporal variability in the structure of a tropical forest. African Journal of Ecology, 35, 341–436.CrossRefGoogle Scholar
  9. Chapman, C. A., Wrangham, R. W., Chapman, L. J., Kennard, D. K., & Zanne, A. E. (1999). Fruit and flower phenology at two sites in Kibale National Park, Uganda. Journal of Tropical Ecology, 15, 189–211.CrossRefGoogle Scholar
  10. Chepko-Sade, B. D., & Sade, D. S. (1979). Patterns of group splitting within matrilineal kinship groups: a study of social group structure in Macaca mulatta (Cercopithecine: Primates). Behavioral Ecology and Sociobiology, 5, 67–87.CrossRefGoogle Scholar
  11. Cords, M., & Rowell, T. E. (1986). Group fission in blue monkeys of the Kakamega Forest, Kenya. Folia Primatologica, 46, 70–82.CrossRefGoogle Scholar
  12. Crook, J. H. (1965). The adaptive significance of avian social organization. Symposia of the Zoological Society of London, 14, 181–218.Google Scholar
  13. Di Fiore, A., & Suarez, S. A. (2007). Route-based travel and shared routes in sympatric spider and woolly monkeys: cognitive and evolutionary implications. Animal Cognition, 10, 317–329.CrossRefPubMedGoogle Scholar
  14. Doolan, S. P., & MacDonald, D. W. (1996). Dispersal and extra-territorial prospecting by slender tailed meerkats (Suricata suricatta) in the south-western Kalahari. Journal of Zoology, 240, 59–73.CrossRefGoogle Scholar
  15. Emery, N. J., & Clayton, N. S. (2004). Comparing the complex cognition of birds and primates. In L. J. Rogers & G. Kaplan (Eds.), Comparative vertebrate cognition (pp. 3–55). The Hague: Kluwer Academic Press.Google Scholar
  16. Forsman, J. T., Mönkkönen, M., Inkeröinen, J., & Reunanen, P. (1998). Aggregate dispersion of birds after encountering a predator: experimental evidence. Journal of Avian Biology, 29, 44–48.CrossRefGoogle Scholar
  17. Garber, P. A. (1989). Role of spatial memory in primate foraging patterns Saguinus mystax and Saguinus fuscicollis. American Journal of Primatology, 19, 203–216.CrossRefGoogle Scholar
  18. Girvan, J. R. & Braithwaite, V. A. (1997). Orientation mechanisms in different populations of the three spined stickleback. In Orientation and Navigation – birds, humans and other animals. Oxford: Royal institute of Navigation.Google Scholar
  19. Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–311.CrossRefPubMedGoogle Scholar
  20. Isbell, L. A., & van Vuren, D. (1996). Differential cost of locational and social dispersal and their consequences for female group-living primates. Behaviour, 133, 1–36.CrossRefGoogle Scholar
  21. Isbell, L. A., Cheney, D. L., & Seyfarth, R. M. (1990). Costs and benefits of home range shifts among vervet monkeys (Cercopithecus aethiops) in Amboseli National Park, Kenya. Behavioral Ecology and Sociobiology, 27, 351–358.CrossRefGoogle Scholar
  22. Janmaat, K. R. L. (2006). Fruits of enlightenment: Fruit finding strategies in wild mangabey monkeys. Ph.D. thesis, University of St. Andrews.Google Scholar
  23. Janmaat, K. R. L., Byrne, R. W., & Zuberbühler, K. (2006a). Evidence for spatial memory of fruiting states of rain forest fruit in wild ranging mangabeys. Animal Behaviour, 71, 797–807.CrossRefGoogle Scholar
  24. Janmaat, K. R. L., Byrne, R. W., & Zuberbühler, K. (2006b). Primates take weather into account when searching for fruit. Current Biology, 16, 1232–1237.CrossRefPubMedGoogle Scholar
  25. Janmaat, K. R. L., Olupot, W., Chancellor, R. L., Arlet, M. E., & Waser, P. M. (2009). Long-term site fidelity and individual home range shifts in Lophocebus albigena. International Journal of Primatology, 30, 443–466.CrossRefPubMedGoogle Scholar
  26. Janmaat, K. R. L., Mijer, R., Chapman, C. A., & Zuberbuhler, K. (submitted). The use of fruiting synchrony in foraging mangabeys. Animal Cognition Google Scholar
  27. Janson, C. H. (1998). Experimental evidence for spatial memory in foraging wild capuchin monkeys Cebus apella. Animal Behaviour, 55, 1229–1243.CrossRefPubMedGoogle Scholar
  28. Janson, C. H., & Di Bitetti, M. S. (1997). Experimental analysis of food detection in capuchin monkeys: effects of distance, travel speed, and resource size. Behavioral Ecology and Sociobiology, 41, 17–24.CrossRefGoogle Scholar
  29. Knezevich, M. (1998). Geophagy as a therapeutic mediator of endoparasitism in a free-ranging group of rhesus macaques (Macaca mulatta). American Journal of Primatology, 44, 71–82.CrossRefPubMedGoogle Scholar
  30. Krebs, C. J. (1988). Population ecology of individuals (pp. 1059–1060). Princeton: Princeton University Press.Google Scholar
  31. Larsen, K. W., & Boutin, S. (1994). Movements, survival and settlement of red squirrel (Tamiasciurus hudsonicus) offspring. Ecology, 70, 214–223.CrossRefGoogle Scholar
  32. Manzer, M. B., & Bell, M. B. (2004). Spatial representation of shelter locations in meerkats, Suricata suricatta. Animal Behaviour, 68, 151–157.CrossRefGoogle Scholar
  33. Martin, P., & Bateson, P. (1986). Measuring behavior. Cambridge, UK: Cambridge University Press.Google Scholar
  34. Menzel, E. W. (1973). Chimpanzee spatial memory organization. Science, 182, 943–945.CrossRefPubMedGoogle Scholar
  35. Mermier, C. M., Robergs, R. A., McMinn, S. M., & Heyward, V. H. (1997). Energy expenditure and physiological responses during indoor rock climbing. British Journal of Sports Medicine, 31, 224–228.CrossRefPubMedGoogle Scholar
  36. Metzgar, L. H. (1967). An experimental comparison of screech owl predation on resident and transient white-footed mice Peromyscus leucopus. Journal of Mammalogy, 48, 387–391.CrossRefGoogle Scholar
  37. Milton, K. (1988). Foraging behaviour and the evolution of primate intelligence. In R.W. Byrne and A. Whiten (Eds.), Machiavellian Intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans (pp. 285–305). Oxford: Clarendon Press.Google Scholar
  38. Murray, C. M., Gilby, I. C., Mane, S. V., & Pusey, A. E. (2008). Adult male chimpanzees inherit maternal ranging patterns. Current Biology, 18, 20–24.CrossRefPubMedGoogle Scholar
  39. Muruthi, P., Altmann, J., & Altmann, S. (1991). Resource base, parity, and reproductive condition affect females’ feeding time and nutrient intake within and between groups of a baboon population. Oecologia, 87, 467–472.CrossRefGoogle Scholar
  40. Newton-Fisher, N. E. (2003). The home range of the Sonso community of chimpanzees from the Budongo Forest, Uganda. African Journal of Ecology, 41, 150–156.CrossRefGoogle Scholar
  41. Nilsson, J. A. (1989). Causes and consequences of natal dispersal in marsh tit, Parus palustris. Journal of Animal Ecology, 58, 619–636.CrossRefGoogle Scholar
  42. Oates, J. F. (1978). Water-plant and soil consumption by guereza monkeys (Colobus guereza): a relationship with minerals and toxins in the diet? Biotropica, 10, 241–253.CrossRefGoogle Scholar
  43. Olupot, W. (1998). Long-term variation in mangabey (Cercocebus albigena johnstoni Lydekker) feeding in Kibale National Park, Uganda. African Journal of Ecology, 36, 96–101.CrossRefGoogle Scholar
  44. Olupot, W. (1999). Mangabey dispersal and conservation in Kibale National Park, Uganda. Ph.D. thesis, Purdue University.Google Scholar
  45. Olupot, W. (2000). Body mass differences among male mangabeys inhabiting logged and unlogged forest compartments. Conservation Biology, 14, 833–843.CrossRefGoogle Scholar
  46. Perneger, T. V. (1998). What’s wrong with Bonferroni adjustments? British Medical Journal, 316, 1236–1238.PubMedGoogle Scholar
  47. Poirier, F. E. (1968). Analysis of a Nilgiri langur (Presbytis johnii) home range change. Primates, 9, 29–43.CrossRefGoogle Scholar
  48. Poulsen, J. R., & Clark, C. J. (2007). Predation on mammals by the grey-cheeked mangabey Lophocebus albigena. Primates, 42, 391–394.CrossRefGoogle Scholar
  49. Reed, J. M., Boulinier, T., Danchin, E., & Oring, L. W. (1999). Prospecting by birds for breeding sites. Current Ornithology, 15, 189–259.Google Scholar
  50. Roper, T. J., Ostler, J. R., & Conradt, L. (2003). The process of dispersal in badgers Meles meles. Mammal Review, 33, 314–318.CrossRefGoogle Scholar
  51. Scheumann, M., & Call, J. (2006). Sumatran orangutans and a yellow-cheeked crested gibbon know what is where. International Journal of Primatology, 27, 575–601.CrossRefGoogle Scholar
  52. Shultz, S., Faurie, C., & Noe, R. (2003). Behavioral responses of Diana monkeys to male long-distance calls: changes in ranging, association patterns and activity. Behavioral Ecology and Sociobiology, 53, 238–245.CrossRefGoogle Scholar
  53. Singleton, I., & van Schaik, C. P. (2001). Orangutan home range size and its determinants in a Sumatran swamp forest. International Journal of Primatology, 22, 877–911.CrossRefGoogle Scholar
  54. Sokal, R. R., & Rohlf, F. J. (1981). Biometry: The principles and practice of statistics in biological research. San Francisco: W. H. Freeman.Google Scholar
  55. Steudel, K. (2000). The physiology and energetics of movement effects on individual and groups. In S. Boinski & P. A. Garber (Eds.), On the move: How and why animals travel in groups (pp. 9–23). Chicago: The University of Chicago Press.Google Scholar
  56. Stevens, J., Rosati, A., Ross, K., & Hauser, M. (2005). Will travel for food: spatial discounting in two new world monkeys. Current Biology, 15, 1855–1860.CrossRefPubMedGoogle Scholar
  57. Struhsaker, T. T. (1997). Ecology of an African rainforest. Gainseville, FL: University Press of Florida.Google Scholar
  58. Struhsaker, T. T., & Leakey, M. (1990). Prey selectivity by crowned hawk-eagles on monkeys in Kibale Forest, Uganda. Behavioral Ecology and Sociobiology, 26, 435–443.CrossRefGoogle Scholar
  59. Struhsaker, T. T., & Leland, L. (1988). Group fission in redtail monkeys (Cercopithecus ascanius) in the Kibale forest, Uganda. In A. Gautier-Hion, F. Bourlière, J. Gautier, & J. Kingdon (Eds.), A primate radiation: Evolutionary biology of the African guenons (pp. 364–388). New York: Cambridge University Press.Google Scholar
  60. Sugiyama, Y. (1960). On the division of a natural troop of Japanese monkeys at Takasakiyama. Primates, 2, 109–148.CrossRefGoogle Scholar
  61. Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review 55, 189–208.Google Scholar
  62. Tinbergen, N. (1972). The animal in its world. Cambridge: Harvard Press.Google Scholar
  63. Wallis, S. J. (1979). The socioecology of Cercocebus albigena johnstonii (Lyddeker): An arboreal rainforest monkey. Ph.D. thesis, University of London.Google Scholar
  64. Waser, P. M. (1974). Intergroup interactions in a forest monkey: The mangabey Cercocebus albigena. Ph.D. thesis, the Rockefeller University.Google Scholar
  65. Waser, P. M. (1976). Cercocebus albigena: site attachment, avoidance, and intergroup spacing. American Naturalist, 11, 91–933.Google Scholar
  66. Waser, P. M. (1977). Individual recognition, intragroup cohesion, and intergroup spacing: evidence for sound playback to forest monkeys. Behaviour, 60, 28–74.CrossRefGoogle Scholar
  67. Waser, P. M. (1985). Spatial structure in mangabey groups. International Journal of Primatology, 6, 569–580.CrossRefGoogle Scholar
  68. Waser, P. M., & Floody, O. (1974). Ranging patterns of the mangabey Cercocebus albigena, in the Kibale Forest, Uganda. Zeitschrift fur Tierpsychologie, 35, 2–101.Google Scholar
  69. Waser, P. M., & Jones, W. T. (1983). Natal philopatry among solitary mammals. Quarterly Review of Biology, 58, 355–390.CrossRefGoogle Scholar
  70. Windberg, L. A. (1996). Coyote responses to visual and olfactory stimuli related to familiarity with an area. Canadian Journal of Zoology, 74, 2248–2253.CrossRefGoogle Scholar
  71. Zuberbühler K, Janmaat KRL (2010). Foraging cognition in non-human primates. In: Platt ML & Ghazanfar AA (Eds.), Primate Neuroethology (pp. 64–83). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Karline R. L. Janmaat
    • 1
    Email author
  • Rebecca L. Chancellor
    • 2
    • 3
  1. 1.Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  2. 2.Department of AnthropologyUniversity of CaliforniaDavisUSA
  3. 3.Gishwati Area Conservation ProgramGreat Ape Trust of IowaDes MoinesUSA

Personalised recommendations