International Journal of Primatology

, Volume 31, Issue 6, pp 958–979

Vertical Clinging and Leaping Revisited: Locomotion and Habitat Use in the Western Tarsier, Tarsius bancanus Explored Via Loglinear Modeling

  • Robin Huw Crompton
  • Mary L. Blanchard
  • Sam Coward
  • R. McNeill Alexander
  • Susannah K. Thorpe
Article

Abstract

Napier and Walker’s (1967) locomotor category of vertical clinging and leaping (VC&L) is one of the most familiar in primatology, and tarsiers are probably the most morphologically specialized of its membership. However, the link between vertical clinging and leaping remains unelucidated. We attempt to do so by reanalysis of Crompton’s 1985 and 1986 field observations of locomotion and habitat use in Tarsius bancanus, using loglinear modeling. Loglinear modeling is better suited to the categorical variables used in many field studies than more traditional statistics, such as ANOVA, developed for continuous variables. We show that climbing, as well as leaping, is one of the predominant forms of locomotion, and that all other things being equal, tarsiers tend to take off from, and land on, similar sized supports, which suggests that the following findings are not likely to be a result of substrate availability alone. Small body size lead to a prediction that tarsiers should leap down but climb up: this was not sustained: rather leaps tend to be level, and climbing accounts for more height loss than randomly expected. However, a prediction that to avoid energy loss to the substrate, the tarsiers should show a preference for large diameter supports for takeoff when leaping longer distances was supported, although tarsiers do not avoid moderately compliant supports. The prediction from ballistic principles that the longest leaps should start from high-angled supports was only weakly sustained, but low-angled supports tend to be strongly associated with short leaps, suggesting that such supports do not facilitate 45° takeoff trajectories. However, tarsiers displayed a preference for landing on medium-sized supports when leaping long distances, suggesting a preference for balancing the need for stability with minimizing musculoskeletal shock.

Keywords

biomechanics diet ecology home range locomotion predation tarsier Tarsius 

References

  1. Bearder, S. K., & Martin, R. D. (1979). The social organization of a nocturnal primate revealed by radiotracking. In D. MacDonald & C. Amlaner (Eds.), A handbook on biotelemetry and radio tracking (pp. 633–648). Oxford: Pergamon Press.Google Scholar
  2. Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis. Cambridge: MIT Press.Google Scholar
  3. Boinski, S. (1989). The positional behavior and substrate use of squirrel monkeys: ecological implications. Journal of Human Evolution, 18, 659–677.CrossRefGoogle Scholar
  4. Cant, J. G. H. (1994). Positional behaviour of arboreal primates and habitat compliance. In B. Thierry, T. R. Anderson, J. J. Roeder, & N. Herrenschmidt (Eds.), Current primatology (Ecology and evolution, Vol. 1, pp. 187–193). Strasbourg: Universite Louis Pasteur.Google Scholar
  5. Cant, J. G. H., Youlatos, D., & Rose, M. D. (2001). Locomotor behavior of Lagothrix lagothricha and Ateles belzebuth in Yasunı’ National Park, Ecuador: general patterns and nonsuspensory modes. Journal of Human Evolution, 41, 141–166.CrossRefPubMedGoogle Scholar
  6. Crompton, R. H. (1980). Galago locomotion. PhD. thesis, Harvard University.Google Scholar
  7. Crompton, R. H. (1984). Foraging, habitat structure and locomotion in T B. Thierry, T. R. Anderson, J. J. Roeder & N. Herrenschmidt two species of Galago. In P. Rodman & J. G. H. Cant (Eds.), Adaptations for foraging in non-human primates (pp. 73–111). New York: Columbia University Press.Google Scholar
  8. Crompton, R. H. (1989). Mechanisms for speciation in Galago and Tarsius. Human Evolution, 4(2), 105–116.CrossRefGoogle Scholar
  9. Crompton, R. H., & Andau, P. M. (1986). Locomotion and habitat utilization in free ranging Tarsius bancanus: a preliminary report. Primates, 27, 337–355.CrossRefGoogle Scholar
  10. Crompton, R. H., & Andau, P. M. (1987). Ranging, activity rhythms and sociality in free-ranging Tarsius bancanus: a preliminary report. International Journal of Primatology, 8(1), 43–71.CrossRefGoogle Scholar
  11. Crompton, R. H., & Sellers, W. I. (2007). A consideration of leaping locomotion as a means of predator avoidance in prosimian primates. In S. Gursky & K. A. Nekaris (Eds.), Primate anti-predator strategies (pp. 127–145). Stuttgart: Springer.CrossRefGoogle Scholar
  12. Crompton, R. H., Oxnard, C. E., & Liebermann, S. S. (1987). Morphometrics and niche metrics in prosimian evolution 1: an initial approach to measuring locomotion, habitat and diet. American Journal of Physical Anthropology, 73, 149–177.CrossRefPubMedGoogle Scholar
  13. Crompton, R. H., Sellers, W. I., & Gunther, M. M. (1993). Energetic efficiency and ecology as selective factors in the saltatory locomotion of prosimian primates. Proceedings of the Royal Society Series B, 254, 41–45.CrossRefGoogle Scholar
  14. Dagosto, M. (1994). Testing positional behavior of Malagasy lemurs: a randomization approach. American Journal of Physical Anthropology, 94, 189–202.CrossRefPubMedGoogle Scholar
  15. Dagosto, M., Gebo, D. L., & Dolino, C. (2001). Positional behavior and social organization of the Phllippine Tarsier (Tarsius syrichta). Primates, 42(3), 233–243.CrossRefGoogle Scholar
  16. Demes, B., & Günther, M. M. (1989). Biomechanics and allometric scaling in primate locomotion and morphology. Folia Primatologica, 52, 58–59.CrossRefGoogle Scholar
  17. Demes, B., Jungers, W. L., Gross, T. S., & Fleagle, J. G. (1995). Kinetics of leaping primates: influence of substrate orientation and compliance. American Journal of Physical Anthropology, 96, 419–429.CrossRefPubMedGoogle Scholar
  18. Demes, B., Fleagle, J. G., & Jungers, W. L. (1999). Takeoff and landing forces of leaping strepsirhine primates. Journal of Human Evolution, 37, 279–292.CrossRefPubMedGoogle Scholar
  19. Gebo, D. L., & Chapman, C. A. (1995). Positional behaviour in five sympatric Old World monkeys. American Journal of Physical Anthropology, 97, 49–76.CrossRefPubMedGoogle Scholar
  20. Gursky, S. (1995). Group size and composition in the spectral tarsier, Tarsius spectrum: implications for social organization. Tropical Biodiversity, 3, 57–62.Google Scholar
  21. Hanna, J. B., Schnitt, D., & Griffin, T. M. (2008). The energetic cost of climbing in primates. Science, 320, 898.CrossRefPubMedGoogle Scholar
  22. Kinnear, P. R., & Gray, C. D. (2009). SPSS 16 made simple. Hove: Psychology Press.Google Scholar
  23. Mackinnon, J., & Mackinnon, K. (1980). The behavior of wild spectral tarsiers. International Journal of Primatology, 1, 361–379.CrossRefGoogle Scholar
  24. Milliken, G. A., & Johnson, D. E. (1992). Analysis of messy data (2nd ed., Vol. 1). New York: Chapman and Hall.Google Scholar
  25. Napier, J. R., & Walker, A. C. (1967). Vertical clinging and leaping, a newly recognised category of locomotor behaviour among Primates. Folia Primatologica, 6, 204–219.CrossRefGoogle Scholar
  26. Niemitz, C. (1985a). Taxonomy and distribution of the genus Tarsius Storr, 1780. In C. Niemitz (Ed.), Biology of tarsiers (pp. 1–16). Stuttgart: Gustav Fischer.Google Scholar
  27. Niemitz, C. (1985b). Vocal communication of two tarsier species (Tarsius bancanus and Tarsius spectrum). In C. Niemitz (Ed.), Biology of tarsiers (pp. 130–141). Stuttgart: Gustav Fischer.Google Scholar
  28. Niemitz, C. (1985c). Synecological relationships and feeding behaviour of the genus Tarsius. In C. Niemitz (Ed.), The biology of tarsiers (pp. 59–75). Stuttgart: Gustav Fischer.Google Scholar
  29. Niemitz, C. (1985d). Activity, rhythms and use of space in semi-wild Bornean tarsiers, with remarks on wild spectral tarsiers. In C. Niemitz (Ed.), Biology of tarsiers (pp. 85–115). Stuttgart: Gustav Fischer.Google Scholar
  30. Niemitz, C. (1985e). An investigation and review of the territorial behaviour and social organization of the genus Tarsius. In C. Niemitz (Ed.), Biology of tarsiers (pp. 117–127). Stuttgart: Gustav Fischer.Google Scholar
  31. Niemitz, C. (1985f). Locomotion and posture of Tarsius bancanus. In C. Niemitz (Ed.), Biology of tarsiers (pp. 191–225). Stuttgart: Gustav Fischer.Google Scholar
  32. Oxnard, C. E., Crompton, R. H., & Liebermann, S. S. (1989). Animal lifestyles and anatomies: The case of the prosimian primates. Seattle: Washington University Press.Google Scholar
  33. Peters, A., & Preuschoft, H. (1984). External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In C. Niemitz (Ed.), Biology of tarsiers (pp. 227–255). Stuttgart: Gustav Fischer.Google Scholar
  34. Rasmussen, D. T., Conroy, G. C., & Simons, E. L. (1998). Tarsier-like locomotor specializations in the Oligocene primate Afrotarsius. Proceedings of the National Academy of Sciences of the United States of America, 95, 14848–14850.CrossRefPubMedGoogle Scholar
  35. Roberts, M., & Kohn, F. (1993). Habitat use, foraging behavior, and activity patterns in reproducing western tarsiers, Tarsius bancanus, in captivity: a management synthesis. Zoo Biology, 12, 217–232.CrossRefGoogle Scholar
  36. Tabachnick, B. G., & Fidell, L. S. (1989). Using multivariate statistics. New York: Harper and Row.Google Scholar
  37. Thorpe, S. K., & Crompton, R. H. (2005). The locomotor ecology of wild orang-utans (Pongo pygmaeus abelii) in the Gunung Leuser Ecosystem, Sumatra, Indonesia: a multivariate analysis using log-linear modelling. American Journal of Physical Anthropology, 127, 58–78.CrossRefPubMedGoogle Scholar
  38. Thorpe, S. K., Crompton, R. H., & Alexander, R Mc N. (2007). Orangutans utilise compliant branches to lower the energetic cost of locomotion. Biology Letters, 3, 253–256.CrossRefPubMedGoogle Scholar
  39. Tremble, M., Muskita, Y., & Supriatna, J. (1993). Field observations of Tarsius dianae at Lore Lindu National Park, Central Sulawesi, Indonesia. Tropical Biodiversity, 1, 67–76.Google Scholar
  40. Warren, R. D., & Crompton, R. H. (1998a). Diet, body size and the energy costs of locomotion in saltatory primates. Folia Primatologica, 69(Supplement 1), 86–100.CrossRefGoogle Scholar
  41. Warren, R. D., & Crompton, R. H. (1998b). Lazy leapers: locomotor behaviour and ecology of Lepilemur edwardsi and Avahi occidentalis. American Journal of Physical Anthropology, 104, 471–486.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Robin Huw Crompton
    • 1
  • Mary L. Blanchard
    • 1
  • Sam Coward
    • 2
  • R. McNeill Alexander
    • 3
  • Susannah K. Thorpe
    • 2
  1. 1.Musculoskeletal Science Research Group, Institute of Aging and Chronic Disease, Sherrington BuildingsThe University of LiverpoolLiverpoolUK
  2. 2.School of BiosciencesUniversity of BirminghamBirminghamUK
  3. 3.Institute for Integrative and Comparative BiologyUniversity of LeedsLeedsUK

Personalised recommendations