International Journal of Primatology

, Volume 31, Issue 2, pp 263–274 | Cite as

A Method for Quantifying Articular Surface Morphology of Metacarpals Using Quadric Surface Approximation

  • Yoshimi Matsuura
  • Naomichi Ogihara
  • Masato Nakatsukasa
Article

Abstract

The shapes of articular surfaces in human metacarpals differ considerably from those in African apes, and such distinctive human morphological characteristics are considered to be strongly linked to dexterous manipulative capabilities that have evolved in the human lineage. However, no detailed studies have quantitatively compared the morphology of the articular surfaces of the metacarpals. We here propose a method for quantifying the orientation and curvature of distal articular surfaces in the 5 metacarpals and proximal saddle surface in the 1st metacarpal via quadric surface approximation. This method utilizes detailed digital models of metacarpals constructed using a 3D noncontact digitizer, and approximates the articular surfaces using a paraboloid to calculate the orientations of the surfaces with respect to the diaphyses and curvature. To demonstrate efficacy of the proposed method, we applied the technique to analysis of the articular surface variation in a total of 98 metacarpals from 10 humans and 11 chimpanzees. The results show that the distal and proximal surfaces of the 1st metacarpal in humans were significantly more axially twisted in a pronating direction; hence, the human thumb pronates and faces the palm and the other fingers with flexion of the first carpometacarpal joint. Further, the head of the 2nd metacarpal in humans is significantly twisted in a pronating direction and the torsion of the metacarpal head gradually shifts toward supination approaching the 5th metacarpals. The proposed method allows quantitative description of such interspecific variations in metacarpals, suggesting its effectiveness for the assessment of the morphological affinities of metacarpals in hominoids.

Keywords

hand precision grip paraboloid surface 3D model 

References

  1. Christie, P. W., & Ridley, J. N. (1990). Classification and mathematical representation of synovial articular surfaces. In G. H. Sperber (Ed.), From apes to angels: Essays in anthropology in honor of Phillip V. Tobias (pp. 111–117). New York: Wiley-Liss.Google Scholar
  2. Deane, A. S., Kremer, E. P., & Begun, D. R. (2005). New approach to quantifying anatomical curvatures using high-resolution polynomial curve fitting (HR-PCF). American Journal of Physical Anthropology, 128, 630–638.CrossRefPubMedGoogle Scholar
  3. Degeorges, R., & Oberlin, C. (2003). Measurement of three-joint-finger motions: Reality or fancy? A three-dimensional anatomical approach. Surgical and Radiologic Anatomy, 25, 105–112.CrossRefPubMedGoogle Scholar
  4. Lewis, O. J. (1977). Joint remodeling and evolution of human hand. Journal of Anatomy, 123, 157–201.PubMedGoogle Scholar
  5. Lewis, O. J. (1989). Functional morphology of the evolving hand and foot. Oxford: Clarendon Press.Google Scholar
  6. MacConaill, M. A. (1973). Structuro-functional classification of synovial articular units. Irish Journal of Medical Sciences, 142, 19–26.CrossRefGoogle Scholar
  7. Marchi, D. (2005). The cross-sectional geometry of the hand and foot bones of the Hominoidea and its relationship to locomotor behavior. Journal of Human Evolution, 49, 743–761.CrossRefPubMedGoogle Scholar
  8. Marzke, M. W., & Marzke, R. F. (2000). Evolution of the human hand: Approaches to acquiring, analysing and interpreting the anatomical evidence. Journal of Anatomy, 197, 121–140.CrossRefPubMedGoogle Scholar
  9. McFadden, D., & Bracht, M. S. (2005). Sex differences in the relative lengths of metacarpals and metatarsals in gorillas and chimpanzees. Hormones and Behavior, 47, 99–111.CrossRefPubMedGoogle Scholar
  10. Napier, J. R. (1961). Prehensility and opposability in the hands of primates. Symposia of the Zoological Society of London, 5, 115–132.Google Scholar
  11. Niewoehner, W. A. (2001). Behavioral inferences from the Skhul/Qafzeh early modern human hand remains. Proceedings of the National Academy of Sciences of the United States of America, 98, 2979–2984.CrossRefPubMedGoogle Scholar
  12. Niewoehner, W. A. (2005). A geometric morphometric analysis of Late Pleistocene human metacarpal 1 base shape. In D. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 285–298). New York: Kluwer.Google Scholar
  13. Niewoehner, W. A. (2006). Neanderthal hands in their proper perspective. In T. Harrison & K. Harvati (Eds.), Vertebrate paleobiology and paleoanthropology. Neanderthals revisited: New approaches and perspectives (pp. 157–189). New York: Plenum Press.Google Scholar
  14. Ogihara, N., Kunai, T., & Nakatsukasa, M. (2005) An anatomically based 3-D musculoskeletal model of the human hand for evaluation of precision grip capabilities. American Journal of Physical Anthropology, 126(S40), 164.Google Scholar
  15. Ogihara, N., Makishima, H., Aoi, S., Sugimoto, Y., Tsuchiya, K., & Nakatsukasa, M. (2009). Development of an anatomically based whole-body musculoskeletal model of the Japanese macaque (Macaca fuscata). American Journal of Physical Anthropology, 139, 323–338.CrossRefPubMedGoogle Scholar
  16. Peters, D., & Koebke, J. (1990). Torsion der Metakarpalia II bis V: Funktionelle und klinische Bedeutung. Handchirurgie, Mikrochirurgie, Plastische Chirurgie, 22, 191–195.PubMedGoogle Scholar
  17. Rohlf, F. J. (1990). Fitting curves to outlines. In F. J. Rohlf & F. L. Bookstein (Eds.), Proceedings of the Michigan Morphometrics Workshop (pp. 167–177). Ann Arbor, MI: University of Michigan Museum of Zoology.Google Scholar
  18. Roy, T. A., Ruff, C. B., & Plato, C. C. (1994). Hand dominance and bilateral asymmetry in the structure of the 2nd metacarpal. American Journal of Physical Anthropology, 94, 203–211.CrossRefPubMedGoogle Scholar
  19. Sarringhaus, L. A., Stock, J. T., Marchant, L. F., & McGrew, W. C. (2005). Bilateral asymmetry in the limb bones of the chimpanzee (Pan troglodytes). American Journal of Physical Anthropology, 128, 840–845.CrossRefPubMedGoogle Scholar
  20. Singh, I. (1979). Torsion in metacarpal bones and bilateral asymmetry. Journal of Anatomy, 129, 343–349.PubMedGoogle Scholar
  21. Susman, R. L. (1979). Comparative and functional-morphology of hominoid fingers. American Journal of Physical Anthropology, 50, 215–236.CrossRefPubMedGoogle Scholar
  22. Susman, R. L., & Creel, N. (1979). Functional and morphological affinities of the subadult hand (OH7) from Olduvai Gorge. American Journal of Physical Anthropology, 51, 311–331.CrossRefPubMedGoogle Scholar
  23. Tocheri, M. (2007). Three-dimensional riddles of the radial wrist: Derived carpal and carpometacarpal joint morphology in the genus Homo and the implications for understanding the evolution of stone tool- related behaviors in hominins. Ph.D. dissertation: Arizona State University.Google Scholar
  24. Tocheri, M. W., Marzke, M. W., Liu, D., Bae, M., Jones, G. P., Williams, R. C., et al. (2003). Functional capabilities of modern and fossil hominid hands: Three-dimensional analysis of trapezia. American Journal of Physical Anthropology, 122, 101–112.CrossRefPubMedGoogle Scholar
  25. Tocheri, M. W., Razdan, A., Williams, R. C., & Marzke, M. W. (2005). A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes. Journal of Human Evolution, 49, 570–586.CrossRefPubMedGoogle Scholar
  26. Tocheri, M. W., Femiani, J. C., Orr, C. M., & Marzke, M. W. (2006) Quadric-based metrics for shape analysis of three-dimensional osteological surfaces. American Journal of Physical Anthropology, 129(S42), 177–178.Google Scholar
  27. Tocheri, M. W., Orr, C. M., Larson, S. G., Sutikna, T., Jatmiko, Saptomo, E. W., et al. (2007). The primitive wrist of Homo floresiensis and its implications for hominin evolution. Science, 317, 1743–1745.CrossRefPubMedGoogle Scholar
  28. Trinkaus, E. (1989). Olduvai hominid-7 trapezial metacarpal-1 articular morphology -contrasts with recent humans. American Journal of Physical Anthropology, 80, 411–416.CrossRefPubMedGoogle Scholar
  29. Tuttle, R. H. (1967). Knuckle-walking and the evolution of hominoid hands. American Journal of Physical Anthropology, 26, 171–206.CrossRefGoogle Scholar
  30. Wunderlich, R. E., & Jungers, W. L. (2009). Manual digital pressures during knuckle-walking in chimpanzees (Pan troglodytes). American Journal of Physical Anthropology, 139, 394–403.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yoshimi Matsuura
    • 1
  • Naomichi Ogihara
    • 1
    • 2
  • Masato Nakatsukasa
    • 1
  1. 1.Laboratory of Physical Anthropology, Graduate School of ScienceKyoto UniversitySakyo, KyotoJapan
  2. 2.Department of Mechanical Engineering, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations