International Journal of Primatology

, Volume 31, Issue 2, pp 321–338 | Cite as

Evolutionary Robotic Approaches in Primate Gait Analysis

  • William Irvin SellersEmail author
  • Todd C. Pataky
  • Paolo Caravaggi
  • Robin Huw Crompton


Understanding how primates move is particularly challenging because many of the experimentation techniques that would normally be available are unsuitable for ethical and conservation reasons. We therefore need to develop techniques that can maximize the data available from minimally intrusive experimentation. One approach for achieving this is to use evolutionary robotic techniques to build a musculoskeletal simulation and generate movement patterns that optimize some global parameter such as economy or performance, or to match existing kinematic data. If the simulation has a sufficiently high biofidelity and can match experimentally measured performance criteria then we can use it to predict aspects of locomotor mechanics that would otherwise be impossible to measure. This approach is particularly valuable when studying fossil primates because it can be based entirely on morphology and can generate movements spontaneously. A major question in human evolution is the origin of bipedal running and the role of elastic energy storage. By using an evolutionary robotics model of humanoid running we can show that elastic storage is required for efficient, high-performance running. Elasticity allows both energy recovery to minimize total energy cost and also power amplification to allow high performance. The most important elastic energy store on the human hind limb is the Achilles tendon: a feature that is at best weakly expressed among the African great apes. By running simulations both with and without this structure we can demonstrate its importance, and we suggest that identification of the presence or otherwise of this tendon—perhaps by calcaneal morphology or Sharpey’s fibers—is essential for identifying when and where in the fossil record human style running originated.


Achilles tendon bipedalism computer simulation elasticity locomotion virtual ablation 



We thank Cliff Addison and the NW-GRID for providing the necessary high-performance computing power for this project and NERC and the Leverhulme Trust for providing funding. We also thank Todd Rae, Eishi Hirasaki, and Yuzuru Hamada for organizing the meeting and this special issue.


  1. Aerts, P. (1998). Vertical jumping in Galago senegalensis: The quest for an obligate mechanical power amplifier. Philosophical Transactions: Biological Sciences, 353, 1607–1620.CrossRefGoogle Scholar
  2. Alexander, R. M. (1974). The mechanics of jumping by a dog (Canis familiaris). Journal of Zoology, 173, 549–573.CrossRefGoogle Scholar
  3. Alexander, R. M. (1992). A model of locomotion on compliant legs. Philosophical Transactions: Biological Sciences, 338, 189–198.CrossRefGoogle Scholar
  4. Alexander, R. M. (2002). Tendon elasticity and muscle function. Comparative Biochemistry and Physiology Part A, 133, 1001–1011.CrossRefGoogle Scholar
  5. Alexander, R. M. (2003). Principles of animal locomotion. Princeton: Princeton University Press.Google Scholar
  6. Alexander, R. M., & Jayes, A. S. (1983). Dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology, 202, 557–582.Google Scholar
  7. Alexander, R. M., & Maloiy, G. M. (1984). Stride lengths and stride frequencies of primates. Journal of Zoology, 201, 135–152.CrossRefGoogle Scholar
  8. Alexander, R. M., Maloiy, G. M. O., Ker, R. F., Jayes, A. S., & Warui, C. N. (1982). The role of tendon elasticity in the locomotion of the camel. Journal of Zoology, 198, 293–313.CrossRefGoogle Scholar
  9. Bates, K. T., Manning, P. L., & Sellers, W. I. (In Press). Sensitivity analysis in evolutionary robotic simulations of bipedal dinosaur running. Journal of Vertebrate Paleontology.Google Scholar
  10. Benjamin, M., Kumai, T., Milz, S., Boszczyk, B. M., Boszczyk, A. A., & Ralphs, J. R. (2002). The skeletal attachment of tendons—tendon ‘entheses’. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 133, 931–945.CrossRefGoogle Scholar
  11. Bennett, M. B., Ker, R. F., Dimery, N. J., & Alexander, R. M. (1986). Mechanical properties of various mammalian tendons. Journal of Zoology, A209, 537–548.Google Scholar
  12. Biewener, A. A., & Blickhan, R. (1988). Kangaroo rat locomotion: Design for elastic energy storage or acceleration? Journal of Experimental Biology, 140, 243–255.PubMedGoogle Scholar
  13. Biewener, A. A., Konieczynski, D. D., & Baudinette, R. V. (1998). In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. Journal of Experimental Biology, 201, 1681–1694.PubMedGoogle Scholar
  14. Bojsen-Møller, F. (1979). Calcaneocuboid joint and stability of the longitudinal arch of the foot at high and low gear push off. Journal of Anatomy, 129, 165–176.PubMedGoogle Scholar
  15. Bramble, D. M., & Lieberman, D. (2004). Endurance running and the evolution of Homo. Nature, 432, 345–352.CrossRefPubMedGoogle Scholar
  16. Carlson, R. E., Fleming, L. L., & Hutton, W. C. (2000). The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexion angle. Foot & Ankle International, 21, 18–25.Google Scholar
  17. Carrier, D. R. (1984). The energetic paradox of human running and hominid evolution. Current Anthropology, 25, 483–495.CrossRefGoogle Scholar
  18. Cavagna, G. A., Heglund, N. C., & Taylor, C. R. (1977). Mechanical work in terrestrial locomotion, two basic mechanisms for minimizing energy expenditure. American Journal of Physiology, 233, R243–R261.PubMedGoogle Scholar
  19. Crompton, R. H., & Sellers, W. I. (2007). A consideration of leaping locomotion as a means of predator avoidance in prosimian primates. In K. A. I. Nekaris & S. L. Gursky (Eds.), Primate anti-predator strategies (pp. 127–145). New York: Springer.CrossRefGoogle Scholar
  20. Crompton, R. H., Li, Y., Wang, W., Günther, M. M., & Savage, R. (1998). The mechanical effectiveness of erect and “bent-hip, bent-knee” bipedal walking in Australopithecus afarensis. Journal of Human Evolution, 35, 55–74.CrossRefPubMedGoogle Scholar
  21. Crompton, R. H., Li, Y., Thorpe, S. K., Wang, W. J., Savage, R., Payne, R., et al. (2003). The biomechanical evolution of erect bipedality. Courier Forschungsinstitut Senckenberg, 243, 115–126.Google Scholar
  22. Crompton, R. H., Vereecke, E. E., & Thorpe, S. K. S. (2008). Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. Journal of Anatomy, 212, 501–543.CrossRefPubMedGoogle Scholar
  23. Daly, P. J., Kitaoka, H. B., & Chao, E. Y. S. (1992). Plantar fasciotomy for intractable plantar fasciitis: Clinical results and biomechanical evaluation. Foot and Ankle, 13, 188–195.PubMedGoogle Scholar
  24. Dimery, N. J., Alexander, R. M., & Ker, R. F. (1986). Elastic extensions of leg tendons in the locomotion of horses (Equus caballus). Journal of Zoology, 210, 415–425.CrossRefGoogle Scholar
  25. Erdemir, A., & Piazza, S. J. (2004). Changes in foot loading following plantar fasciotomy: A computer modeling study. Journal of Biomechanical Engineering, 126, 237–243.CrossRefPubMedGoogle Scholar
  26. Erdemir, A., Hamel, A. J., Fauth, A. R., Piazza, S. J., & Sharkey, N. A. (2004). Dynamic loading of the plantar aponeurosis in walking. Journal of Bone and Joint Surgery, 86, 546–552.PubMedGoogle Scholar
  27. Frey, H. (1913). Der Musculus triceps surae in der Primatenreihe. Morphologische Jahrbuch, 47, 1–192.Google Scholar
  28. Full, R. J., & Tu, M. S. (1991). Mechanics of a rapid running insect—2-legged, 4-legged and 6-legged locomotion. Journal of Experimental Biology, 156, 215–231.PubMedGoogle Scholar
  29. Heglund, N. C., & Taylor, C. R. (1988). Speed, stride frequency and energy-cost per stride—how do they change with body size and gait. Journal of Experimental Biology, 138, 301–318.PubMedGoogle Scholar
  30. Hicks, J. H. (1954). The mechanics of the foot: II The plantar aponeurosis and the arch. Journal of Anatomy, 88, 25–31.PubMedGoogle Scholar
  31. Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 126, 136–195.CrossRefGoogle Scholar
  32. Hof, A. L., Elzinga, H., Grimmius, W., & Halbertsma, J. P. K. (2002). Speed dependence of averaged EMG profiles in walking. Gait & Posture, 16, 78–86.CrossRefGoogle Scholar
  33. Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., & Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical Biomechanics, 11, 253–259.CrossRefPubMedGoogle Scholar
  34. Ker, R. F., Bennett, M. B., Bibby, S. R., Kester, R. C., & Alexander, R. M. (1987). The spring in the arch of the human foot. Nature, 325, 147–149.CrossRefPubMedGoogle Scholar
  35. Kimura, T. (1996). The centre of gravity of the body during the ontogeny of chimpanzee bipedal walking. Folia Primatologica, 66, 126–136.CrossRefGoogle Scholar
  36. Kramer, P. A. (1999). Modelling the locomotor energetics of extinct hominids. Journal of Experimental Biology, 202, 2807–2818.PubMedGoogle Scholar
  37. Larson, S. G., & Stern, J. T. (1986). EMG of scapulohumeral muscles in the chimpanzee during reaching and “arboreal” locomotion. American Journal of Anatomy, 176, 171–190.CrossRefPubMedGoogle Scholar
  38. Larson, S. G., Stern, J. T., & Jungers, W. L. (1991). EMG of serratus anterior and trapezius in the chimpanzee—scapular rotators revisited. American Journal of Physical Anthropology, 85, 71–84.CrossRefPubMedGoogle Scholar
  39. Lee, R. B., & DeVore, I. (1968). Man the hunter. Chicago: Aldine.Google Scholar
  40. Lichtwark, G. A. (2005). In vivo mechanical properties of the human Achilles tendon during one-legged hopping. Journal of Experimental Biology, 208, 4715–4725.CrossRefPubMedGoogle Scholar
  41. Lichtwark, G. A., & Wilson, A. M. (2006). Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. Journal of Experimental Biology, 209, 4379–4388.CrossRefPubMedGoogle Scholar
  42. Lichtwark, G. A., & Wilson, A. M. (2007). Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion? Journal of Biomechanics, 40, 1768–1775.CrossRefPubMedGoogle Scholar
  43. Ma, S., & Zahalak, G. I. (1991). A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics, 24, 21–35.CrossRefPubMedGoogle Scholar
  44. McGeer, T. (1992). Principles of walking and running. In R. M. Alexander (Ed.), Advances in comparative and environmental physiology 11. Mechanics of animal locomotion (pp. 114–140). Berlin: Springer-Verlag.Google Scholar
  45. Minetti, A. E., & Alexander, R. M. (1997). A theory of metabolic costs for bipedal gaits. Journal of Theoretical Biology, 186, 467–476.CrossRefPubMedGoogle Scholar
  46. Nagano, A., Umberger, B. R., Marzke, M. W., & Gerritsen, K. G. M. (2005). Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288–1). American Journal of Physical Anthropology, 126, 2–13.CrossRefPubMedGoogle Scholar
  47. Neptune, R. R., & Sasaki, K. (2005). Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. Journal of Experimental Biology, 208, 799–808.CrossRefPubMedGoogle Scholar
  48. Nicolas, G., Multon, F., Berillon, G., & Marchal, F. (2007). From bone to plausible bipedal locomotion using inverse kinematics. Journal of Biomechanics, 40, 1048–1057.CrossRefPubMedGoogle Scholar
  49. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics. Cambridge: MIT Press.Google Scholar
  50. Pataky, T. C., Caravaggi, P., Savage, R., Parker, D., Goulermas, J. Y., Sellers, W. I., et al. (2008). New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). Journal of Biomechanics, 41, 1987–1994.CrossRefPubMedGoogle Scholar
  51. Roberts, T. J., Marsh, R. L., Weyand, P. G., & Taylor, C. R. (1997). Muscular force in running turkeys: The economy of minimizing work. Science, 275, 1113–1115.CrossRefPubMedGoogle Scholar
  52. Ryan, T., & Van Rietbergen, B. (2004). Mechanical significance of femoral head trabecular bone structure in Loris and Galago evaluated using micromechanical finite element models. American Journal of Physical Anthropology, 126, 82–96.CrossRefGoogle Scholar
  53. Sellers, W. I. (1996). A biomechanical investigation into the absence of leaping in the locomotor repertoire of the Slender Loris (Loris tardigradus). Folia Primatologica, 67, 1–14.Google Scholar
  54. Sellers, W. I., & Manning, P. L. (2007). Estimating dinosaur maximum running speeds using evolutionary robotics. Proceedings of the Royal Society of London. Series B, 274, 2711–2716.CrossRefPubMedGoogle Scholar
  55. Sellers, W. I., Dennis, L. A., & Crompton, R. H. (2003). Predicting the metabolic energy costs of bipedalism using evolutionary robotics. Journal of Experimental Biology, 206, 1127–1136.CrossRefPubMedGoogle Scholar
  56. Sellers, W. I., Dennis, L. A., Wang, W., & Crompton, R. H. (2004). Evaluating alternative gait strategies using evolutionary robotics. Journal of Anatomy, 204, 343–351.CrossRefPubMedGoogle Scholar
  57. Sellers, W. I., Cain, G. M., Wang, W., & Crompton, R. H. (2005). Stride lengths, speed and energy costs in walking of Australopithecus afarensis: Using evolutionary robotics to predict locomotion of early human ancestors. Journal of the Royal Society Interface, 5, 431–441.CrossRefGoogle Scholar
  58. Silder, A., Whittington, B., Heiderscheit, B., & Thelen, D. G. (2007). Identification of passive elastic joint moment-angle relationships in the lower extremity. Journal of Biomechanics, 40, 2628–2635.CrossRefPubMedGoogle Scholar
  59. Sockol, M. D., Raichlen, D., & Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism. Proceedings of the National Academy of Sciences of the United States of America, 104, 12265–12269.CrossRefPubMedGoogle Scholar
  60. Srinivasan, M., & Ruina, A. (2006). Computer optimization of a minimal biped model discovers walking and running. Nature, 439, 72–75.CrossRefPubMedGoogle Scholar
  61. Susman, R. L., & Stern, J. T. (1980). EMG of the interosseous and lumbrical muscles in the chimpanzee (Pan troglodytes) hand during locomotion. American Journal of Anatomy, 157, 389–397.CrossRefPubMedGoogle Scholar
  62. Taylor, C., & Rowntree, V. J. (1973). Running on two or on four legs: Which consumes more energy? Science, 179, 186–187.CrossRefPubMedGoogle Scholar
  63. Taylor, C., Caldwell, S. L., & Rowntree, V. J. (1972). Running up and down hills: Some consequences of size. Science, 178, 1096–1097.CrossRefPubMedGoogle Scholar
  64. Taylor, C. R., Heglund, N. C., & Maloiy, G. M. (1982). Energetics and mechanics of terrestrial locomotion, I: Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97, 1–21.PubMedGoogle Scholar
  65. Thorpe, S. K. S., Crompton, R. H., & Wang, W. J. (2004). Stresses exerted in the hindlimb muscles of common chimpanzees (Pan troglodytes) during bipedal locomotion. Folia Primatologica, 75, 253–265.CrossRefGoogle Scholar
  66. Vogel, S. (1998). Cats’ paws and catapults: Mechanical worlds of nature and people. New York: W. W. Norton.Google Scholar
  67. Warren, G. L., Maher, R. M., & Higbie, E. J. (2004). Temporal patterns of plantar pressure and lower-leg muscle activity during walking: Effect of speed. Gait & Posture, 19, 91–100.CrossRefGoogle Scholar
  68. Wilson, S. W., & Watson, J. C. (2003). A catapult action for rapid limb protraction. Nature, 421, 35–36.CrossRefPubMedGoogle Scholar
  69. Winter, D. A. (1990). Biomechanics and motor control of human movement. New York: Wiley.Google Scholar
  70. Witte, H., Hoffmann, H., Hackert, R., Schilling, C., Fischer, M. S., & Preuschoft, H. (2004). Biomimetic robotics should be based on functional morphology. Journal of Anatomy, 204, 331–342.CrossRefPubMedGoogle Scholar
  71. Yamazaki, N. (1985). Primate bipedal walking. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 105–130). Tokyo: University of Tokyo Press.Google Scholar
  72. Yamazaki, N., Hase, K., Ogihara, N., & Hayamizu, N. (1996). Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model. Folia Primatologica, 66, 253–271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • William Irvin Sellers
    • 1
    Email author
  • Todd C. Pataky
    • 2
  • Paolo Caravaggi
    • 2
  • Robin Huw Crompton
    • 2
  1. 1.Faculty of Life SciencesUniversity of ManchesterManchesterUK
  2. 2.Department of Human Anatomy and Cell BiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations