International Journal of Primatology

, Volume 31, Issue 6, pp 1002–1031 | Cite as

Overview of Sensory Systems of Tarsius

  • Peiyan Wong
  • Christine E. Collins
  • Jon H. Kaas


Tarsiers form the sister taxon to anthropoid primates, and their brains possess a mix of primitive and specialized features. We describe architectonically distinct subdivisions of the somatosensory, auditory, and visual systems for tarsiers, as well as nocturnal New World owl monkeys (Aotus) and strepsirhine galagos (Otolemur) for comparison. In general, the dorsal column nuclei, the ventroposterior nucleus, and primary somatosensory cortex are somewhat less distinctly differentiated in tarsiers, suggesting that the somatosensory system is less specialized for somatosensory processing. Although the inferior colliculus and the medial geniculate complex of the auditory system are architectonically similar across the 3 primates, the primary auditory cortex of tarsiers is more distinct, suggesting a greater role in auditory cortical processing. In the visual system, the differentiation of the superior colliculus is similar in all 3 primates, whereas the laminar pattern in the lateral geniculate nucleus and the subdivisions of the inferior pulvinar in tarsiers resemble those of anthropoid primates rather than strepsirhines, in agreement with the evidence that tarsiers form the sister clade for anthropoids. In addition, primary visual cortex has more distinct sublayers in tarsiers than other primates, attesting to its importance in this visual predator. Overall, tarsiers have well developed visual and auditory systems, and a less well developed somatosensory system, suggesting an enhanced reliance on the visual and auditory senses, rather than somatosensory sense.


auditory cortex cortical areas lateral geniculate nucleus medial geniculate nucleuprimates somatosensory cortex ventroposterior nucleus visual cortex 



We thank Dr. Anita Hendrickson for providing 3 adult brains of Tarsius spectrum for histological study. The fourth brain was from the histological collection of Dr. J. M. Petras. We thank the reviewers for helpful comments on the manuscript. Funds to support this research were from Vanderbilt University to J. H. Kaas and a grant from the National Eye Institute, EY 02686 to J. H. Kaas.


  1. Apkarian, A. V., & Hodge, C. J. (1989). Primate spinothalamic pathways: III Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. The Journal of Comparative Neurology, 288(3), 493–511.CrossRefPubMedGoogle Scholar
  2. Benedek, G., Fischer-Szatmari, L., Kovacs, G., Perenyi, J., & Katoh, Y. Y. (1996). Visual, somatosensory and auditory modality properties along the feline suprageniculate-anterior ectosylvian sulcus/insular pathway. Progress in Brain Research, 112, 325–334.CrossRefPubMedGoogle Scholar
  3. Bermejo, P. E., Jiménez, C. E., Torres, C. V., & Avendaño, C. (2003). Quantitative stereological evaluation of the gracile and cuneate nuclei and their projection neurons in the rat. The Journal of Comparative Neurology, 463(4), 419–433.CrossRefPubMedGoogle Scholar
  4. Bloch, J. I., Fisher, D. C., Gingerich, P. D., Gunnell, G. F., Simons, E. L., & Uhen, M. D. (1997). Cladistic analysis and anthropoid origins. Science, 278(5346), 2134–2136.CrossRefPubMedGoogle Scholar
  5. Burton, H., & Jones, E. G. (1976). The posterior thalamic region and its cortical projection in New World and Old World monkeys. The Journal of Comparative Neurology, 168(2), 249–301.CrossRefPubMedGoogle Scholar
  6. Carlson, M., Huerta, M. F., Cusick, C. G., & Kaas, J. H. (1986). Studies on the evolution of multiple somatosensory representations in primates: The organization of anterior parietal cortex in the New World Callitrichid, Saguinus. The Journal of Comparative Neurology, 246(3), 409–426.CrossRefPubMedGoogle Scholar
  7. Casagrande, V. A. (1994). A third visual pathway to primate V1. Trends in Neuroscience, 17, 305–310.Google Scholar
  8. Casagrande, V. A., & Kaas, J. H. (1994). The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In K. S. Rockland & A. Peters (Eds.), Cerebral cortex: Primary visual cortex in primates (pp. 201–259). New York: Plenum Press.Google Scholar
  9. Casagrande, V. A., Khaytin, I., & Boyd, J. (2007). The evolution of parallel visual pathways in the brains of primates. In J. H. Kaas, T. M. Preuss, T. H. Bullock, L. A. Krubitzer, J. L. Rubenstein & G. F. Striedter (Eds.), Evolution of nervous systems—A comprehensive reference (pp. 87–108). Amsterdam: Elsevier.CrossRefGoogle Scholar
  10. Chacko, L. W. (1954). The lateral geniculate body of Tarsius spectrum. Journal of the Anatomical Society of India, 375—377.Google Scholar
  11. Collins, C. E., Hendrickson, A., & Kaas, J. H. (2005). Overview of the visual system of Tarsius. The Anatomical Record A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 287(1), 1013–1025.CrossRefPubMedGoogle Scholar
  12. Crompton, R. H. (1989). Mechanisms for speciation in Galago and Tarsius. Human Evolution, 4(2), 105–116.CrossRefGoogle Scholar
  13. Crompton, R. H., & Andau, P. M. (1986). Locomotion and habitat utilization in free-ranging Tarsius bancanus: A preliminary report. Primates, 27(3), 337–355.CrossRefGoogle Scholar
  14. de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006). Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions. The Journal of Comparative Neurology, 496(1), 72–96.CrossRefPubMedGoogle Scholar
  15. Diamond, I. T., Fitzpatrick, D., & Schmechel, D. (1993). Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri). Proceedings of the National Academy of Sciences of the United States of America, 90(4), 1425–1429.CrossRefPubMedGoogle Scholar
  16. Fleagle, J. G. (1999). Primate adaptation and evolution. San Diego: Academic Press.Google Scholar
  17. Florence, S. L., Wall, J. T., & Kaas, J. H. (1989). Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans. The Journal of Comparative Neurology, 286(1), 48–70.CrossRefPubMedGoogle Scholar
  18. Florence, S. L., Wall, J. T., & Kaas, J. H. (1991). Central projections from the skin of the hand in squirrel monkeys. The Journal of Comparative Neurology, 311(4), 563–578.CrossRefPubMedGoogle Scholar
  19. Fries, W., & Distel, H. (1983). Large layer VI neurons of monkey striate cortex (Meynert cells) project to the superior colliculus. Proceedings of the Royal Society of London B Biological Sciences, 219(1214), 53–59.CrossRefGoogle Scholar
  20. Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurological Research, 1(2), 203–209.Google Scholar
  21. Gingold, S. I., Greenspan, J. D., & Apkarian, A. V. (1991). Anatomic evidence of nociceptive inputs to primary somatosensory cortex: Relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. The Journal of Comparative Neurology, 308(3), 467–490.CrossRefPubMedGoogle Scholar
  22. Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. The Journal of Comparative Neurology, 400(2), 271–286.CrossRefPubMedGoogle Scholar
  23. Hässler, R. (1966). Comparative anatomy of the central visual systems in day- and night-active primates. In R. Hassler & H. Stephen (Eds.) Stuttgart: Thieme.Google Scholar
  24. Hendrickson, A. E. (1985). Dots, stripes and columns in monkey visual cortex. Trends in Neuroscience, 8, 404–410.CrossRefGoogle Scholar
  25. Hendrickson, A., Djajadi, H. R., Nakamura, L., Possin, D. E., & Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. The Journal of Comparative Neurology, 424(4), 718–730.CrossRefPubMedGoogle Scholar
  26. Hendry, S. H. C., & Casagrande, V. A. (1996). A common pattern for a third visual channel in the primate LGN. Society for Neuroscience Abstracts, 22(631), 1605.Google Scholar
  27. Iyengar, S., Qi, H. X., Jain, N., & Kaas, J. H. (2007). Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of New World monkeys. The Journal of Comparative Neurology, 501(1), 95–120.CrossRefPubMedGoogle Scholar
  28. Johnson, J. K., & Casagrande, V. A. (1995). Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus). The Journal of Comparative Neurology, 356(2), 238–260.CrossRefPubMedGoogle Scholar
  29. Jones, E. G. (2007). Thalamus. Cambridge University Press.Google Scholar
  30. Kaas, J. H. (1983). What, if anything, is SI? Organization of first somatosensory area of cortex. Physiological Reviews, 63(1), 206–231.PubMedGoogle Scholar
  31. Kaas, J. H. (2000). Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller. Brain and Mind, 1(1), 7–23.CrossRefGoogle Scholar
  32. Kaas, J. H. (2004). Somatosensory system. In G. Paxinos & J. K. Mai (Eds.), The human nervous system (pp. 1059–1092). New York: Elsevier Academic Press.CrossRefGoogle Scholar
  33. Kaas, J. H. (2008). The somatosensory thalamus and associated pathways. In E. Gardner & J. H. Kaas (Eds.), The senses, somatosensation (pp. 117–141). London: Elsevier.Google Scholar
  34. Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11793–11799.CrossRefPubMedGoogle Scholar
  35. Kaas, J. H., & Hackett, T. A. (2008). The functional neuroanatomy of the auditory cortex. In P. Dallos & D. Oertel (Eds.), The senses, audition (pp. 765–780). London: Elsevier Academic Press.Google Scholar
  36. Kaas, J. H., & Huerta, M. F. (1988). The subcortical visual system of primates. In H. P. Steklis (Ed.), Comparative primate biology (pp. 327–391). New York: Alan R. Liss.Google Scholar
  37. Kaas, J. H., & Lyon, D. C. (2001). Visual cortex organization in primates: Theories of V3 and adjoining visual areas. Progress in Brain Research, 134, 285–295.CrossRefPubMedGoogle Scholar
  38. Kaas, J. H., & Pons, T. P. (1988). The somatosensory system of primates. In H. D. Steklis & J. Erwin (Eds.), Comparative primate biology (pp. 421–468). New York: Alan R. Liss.Google Scholar
  39. Kaas, J. H., Guillery, R. W., & Allman, J. M. (1972). Some principles of organization in the dorsal lateral geniculate nucleus. Brain, Behavior and Evolution, 6(1), 253–299.CrossRefPubMedGoogle Scholar
  40. Kaas, J. H., Huerta, M. F., Weber, J. T., & Harting, J. K. (1978). Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. The Journal of Comparative Neurology, 182(3), 517–553.CrossRefPubMedGoogle Scholar
  41. Kaas, J. H., Nelson, R. J., Sur, M., Dykes, R. W., & Merzenich, M. M. (1984). The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. The Journal of Comparative Neurology, 226(1), 111–140.CrossRefPubMedGoogle Scholar
  42. Kaas, J. H., Hackett, T. A., & Tramo, M. J. (1999). Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 9(2), 164–170.CrossRefPubMedGoogle Scholar
  43. Kay, R. F., Ross, C., & Williams, B. A. (1997). Anthropoid origins. Science, 275(5301), 797–804.CrossRefPubMedGoogle Scholar
  44. Kolmer, W. (1930). Zur Kenntnis des Auges der Primaten. Anatomy and Embryology (Berlin), 93(6), 679–722.CrossRefGoogle Scholar
  45. Krubitzer, L. A., & Kaas, J. H. (1992). The somatosensory thalamus of monkeys: Cortical connections and a redefinition of nuclei in marmosets. The Journal of Comparative Neurology, 319(1), 123–110.CrossRefPubMedGoogle Scholar
  46. Le Gros Clark, W. E. (1930). The thalamus of Tarsius. Journal of Anatomy, 64(Pt 4), 371–414.Google Scholar
  47. Lin, C. S., Merzenich, M. M., Sur, M., & Kaas, J. H. (1979). Connections of areas 3b and 1 of the parietal somatosensory strip with the ventroposterior nucleus in the owl monkey (Aotus trivirgatus). The Journal of Comparative Neurology, 185(2), 355–371.CrossRefPubMedGoogle Scholar
  48. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749.CrossRefPubMedGoogle Scholar
  49. MacKinnon, J., & MacKinnon, K. (1980). The behavior of wild spectral tarsiers. International Journal of Primatology, 1(4), 361–379.CrossRefGoogle Scholar
  50. McGuinness, E. R., McDonald, C. T., Sereno, M., & Allman, J. M. (1986). Primates without blobs: The distribution of cytochrome oxidase activity in Tarsius, Hapalemur, and Cheirogaleus. Society for Neuroscience Abstracts, 12, 130.Google Scholar
  51. Merzenich, M. M., Kaas, J. H., Sur, M., & Lin, C. S. (1978). Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). The Journal of Comparative Neurology, 181(1), 41–73.CrossRefPubMedGoogle Scholar
  52. Mesulam, M. M., & Mufson, E. J. (1985). The insula of Reil in man and monkey. Architectonics, connectivity and function. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (pp. 179–226). New York: Plenum Press.Google Scholar
  53. Molinari, M., Dell’Anna, M. E., Rausell, E., Leggio, M. G., Hashikawa, T., & Jones, E. G. (1995). Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. The Journal of Comparative Neurology, 362(2), 171–194.CrossRefPubMedGoogle Scholar
  54. Morel, A., Garraghty, P. E., & Kaas, J. H. (1993). Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. The Journal of Comparative Neurology, 335(3), 437–459.CrossRefPubMedGoogle Scholar
  55. Morest, D. G. (1965). The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in cat. Journal of Anatomy, 99(Pt 3), 611–634.PubMedGoogle Scholar
  56. Morest, D. K., & Winer, J. A. (1986). The comparative anatomy of neurons: homologous neurons in the medial geniculate body of the opossum and the cat. Advances in Anatomy, Embryology, and Cell Biology, 97, 1–94.PubMedGoogle Scholar
  57. Niemitz, C. (2001). Tarsiers. In D. W. MacDonald (Ed.), The encyclopedia of mammals (p. 338). New York: Facts on File.Google Scholar
  58. Norden, J. J., & Kaas, J. H. (1978). The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase. The Journal of Comparative Neurology, 182(4), 707–725.CrossRefPubMedGoogle Scholar
  59. Oliver, D. L., & Hall, W. C. (1978). The medial geniculate body of the tree shrew, Tupaia glis. I. Cytoarchitecture and midbrain connections. The Journal of Comparative Neurology, 182(3), 423–458.CrossRefPubMedGoogle Scholar
  60. Pearson, J. C., & Haines, D. E. (1980a). Somatosensory thalamus of a prosimian primate (Galago senegalensis). I. Configuration of nuclei and termination of spinothalamic fibers. The Journal of Comparative Neurology, 190(3), 533–558.CrossRefPubMedGoogle Scholar
  61. Pearson, J. C., & Haines, D. E. (1980b). Somatosensory thalamus of a prosimian primate (Galago senegalensis). II. An HRP and Golgi study of the ventral posterolateral nucleus (VPL). The Journal of Comparative Neurology, 190(3), 559–580.CrossRefPubMedGoogle Scholar
  62. Perry, G. H., Martin, R. D., & Verrelli, B. C. (2007). Signatures of functional constraint at aye-aye opsin genes: The potential of adaptive color vision in a nocturnal primate. Molecular Biology and Evolution, 24(9), 1963–1970.CrossRefPubMedGoogle Scholar
  63. Poggio, G. F., & Mountcastle, V. B. (1960). A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Central nervous mechanisms in pain. Bulletin of Johns Hopkins Hospital, 106, 266–316.Google Scholar
  64. Polyak, S. (1957). The vertebrate visual system. Chicago: The University of Chicago Press.Google Scholar
  65. Preuss, T. M., & Goldman-Rakic, P. S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. The Journal of Comparative Neurology, 310(4), 475–506.CrossRefPubMedGoogle Scholar
  66. Preuss, T. M., & Kaas, J. H. (1996). Cytochrome oxidase “blobs” and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. Brain, Behavior and Evolution, 47(2), 103–112.CrossRefPubMedGoogle Scholar
  67. Qi, H. X., & Kaas, J. H. (2006). Organization of primary afferent projections to the gracile nucleus of the dorsal column system of primates. The Journal of Comparative Neurology, 499(2), 183–217.CrossRefPubMedGoogle Scholar
  68. Rosa, M. G. P., Pettigrew, J. D., & Cooper, H. M. (1996). Unusual pattern of retinogeniculate projections in the controversial primate Tarsius. Brain Behavior and Evolution, 48(3), 121–156.CrossRefGoogle Scholar
  69. Ross, C., & Kay, R. F. (2004). Anthropoid origins: New visions. New York: Kluwer Academic/Plenum.Google Scholar
  70. Schmitz, J., Ohme, M., & Zischler, H. (2002). The complete mitochondrial sequence of Tarsius bancanus: Evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Molecular Biology and Evolution, 19(4), 544–553.PubMedGoogle Scholar
  71. Simmons, R. M. T. (1982). The morphology of the diencephalon in the Prosimii. III. Tarsioidea. Journal für Hirnforschung, 23(2), 149–173.PubMedGoogle Scholar
  72. Smith, G. E. (1924). The evolution of man. Oxford: Oxford University Press.Google Scholar
  73. Spatz, W. B. (1975). An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix. Brain Research, 92(3), 450–455.CrossRefPubMedGoogle Scholar
  74. Stephan, H. (1969). Quantitative investigations on visual structures in primate brains. Proceedings of the 2nd International Congress on Primatology, 3, 34–42.Google Scholar
  75. Stephan, H. (1984). Morphology of the brain in Tarsius. Biology of Tarsiers, 319–344.Google Scholar
  76. Stepniewska, I. (2004). The pulvinar complex. In J. H. Kaas & C. E. Collins (Eds.), The primate visual system (pp. 53–80). Boca Raton, FL: CRC Press.Google Scholar
  77. Stepniewska, I., & Kaas, J. H. (1997). Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys. Vision Neuroscience, 14(6), 1043–1060.CrossRefGoogle Scholar
  78. Stepniewska, I., Qi, H. X., & Kaas, J. H. (2000). Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vision Neuroscience, 17(4), 529–549.CrossRefGoogle Scholar
  79. Strata, F., Coq, J. O., & Kaas, J. H. (2003). The chemo- and somatotopic architecture of the Galago cuneate and gracile nuclei. Neuroscience, 116(3), 831–850.CrossRefPubMedGoogle Scholar
  80. Sur, M., Nelson, R. J., & Kaas, J. H. (1980). Representation of the body surface in somatic koniocortex in the prosimian Galago. The Journal of Comparative Neurology, 189(2), 381–402.CrossRefPubMedGoogle Scholar
  81. Sur, M., Weller, R. E., & Kaas, J. H. (1981). Physiological and anatomical evidence for a discontinuous representation of the trunk in S-I of tree shrews. The Journal of Comparative Neurology, 201(1), 135–147.CrossRefPubMedGoogle Scholar
  82. Tilney, F. (1927). The brain stem of Tarsius. A critical comparison with other Primates. The Journal of Comparative Neurology, 43(3), 371–432.CrossRefGoogle Scholar
  83. von Bonin, G. (1951). The isocortex of Tarsius. The Journal of Comparative Neurology, 95(3), 387–428.CrossRefGoogle Scholar
  84. Walls, G. L. (1953). The lateral geniculate nucleus and visual histophysiology. British Journal of Ophthalmology, 38(3), 1–93.Google Scholar
  85. Wedeen, V. J., Wang, R., Schmahmann, J. D., Takahashi, E., Kaas, J. H., Hagmann, P., et al. (2009). Diffusion spectrum MRI in three mammals – rat, monkey and human. Frontiers in Neuroscience, 3(1), 74–77.Google Scholar
  86. Welker, W. I. (1973). Principles of organization of the ventrobasal complex in mammals. Brain, Behavior and Evolution, 7(4), 253–336.CrossRefPubMedGoogle Scholar
  87. Wiesendanger, M., & Miles, T. S. (1982). Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiological Reviews, 62(4), 1234–1270.PubMedGoogle Scholar
  88. Winer, J. A., Diamond, I. T., & Raczkowski, D. (1977). Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. The Journal of Comparative Neurology, 176(3), 387–417.CrossRefPubMedGoogle Scholar
  89. Wong, P., & Kaas, J. H. (2009). An architectonic study of the neocortex of the short-tailed opossum (Monodelphis domestica). Brain, Behavior and Evolution, 73(3), 206–228.CrossRefPubMedGoogle Scholar
  90. Wong, P., Collins, C. E., Baldwin, M. K. L., & Kaas, J. H. (2009). Cortical connections of the visual pulvinar complex in prosimian galagos (Otolemur garnetti). The Journal of Comparative Neurology, 517(4), 493–511.CrossRefPubMedGoogle Scholar
  91. Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 171(1), 11–28.Google Scholar
  92. Woollard, H. H. (1925). The cortical lamination of Tarsius. Journal of Anatomy, 60(Pt 1), 86–105.PubMedGoogle Scholar
  93. Woollard, H. H. (1926). Notes on the retina and lateral geniculate body in Tupaia, Tarsius, Nycticebus and Hapale. Brain, 49(1), 77–105.CrossRefGoogle Scholar
  94. Wu, C. W., & Kaas, J. H. (2003). Somatosensory cortex of prosimian Galagos: Physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus. The Journal of Comparative Neurology, 457(3), 263–292.CrossRefPubMedGoogle Scholar
  95. Yoder, A. D. (2003). The phylogenetic position of the genus Tarsius: Whose side are you on? In P. C. Wright, E. L. Simons & S. Gursky (Eds.), Tarsiers past, present, and future (pp. 161–175). New Brunswick, NJ: Rutgers University Press.Google Scholar
  96. Zhao, H., Rossiter, S. J., Teeling, E. C., Li, C., Cotton, J. A., & Zhang, S. (2009). The evolution of color vision in nocturnal mammals. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 8980–8985.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Peiyan Wong
    • 1
  • Christine E. Collins
    • 1
  • Jon H. Kaas
    • 1
  1. 1.Department of PsychologyVanderbilt UniversityNashvilleUSA

Personalised recommendations