Fig Foraging by Dichromatic and Trichromatic Cebus capucinus in a Tropical Dry Forest

  • Amanda D. Melin
  • Linda M. Fedigan
  • Chihiro Hiramatsu
  • Tomohide Hiwatashi
  • Nigel Parr
  • Shoji Kawamura
Article

Abstract

Figs are important resources for frugivores, and Ficus is an ideal taxon for evaluating patterns of primate foraging related to food color. Ficus spp. can be classified as conspicuous (color change from greenish to reddish during ripening) or cryptic (green throughout ripening). To investigate the effect on foraging of color vision phenotype variation for these 2 types of figs, we conducted a 20-mo study on 4 groups of white-faced capuchins (Cebus capucinus) in the Santa Rosa Sector of the ACG, Costa Rica between May 2004 and September 2008. We genotyped all individuals and collected behavioral data on feeding rates, acceptance indices, and foraging sequences. We found a significant effect of fig type; feeding rates and acceptance indices were higher for conspicuous figs than for cryptic figs, and subjects sniffed cryptic figs more often than conspicuous figs. We also found that dichromats sniffed more figs and had longer foraging sequences than trichromats, especially for cryptic figs. Among 6 subtypes of dichromats and trichromats, monkeys possessing the trichromat phenotype with the most spectrally separated L-M opsin alleles showed the highest acceptance index for conspicuous figs, though there were no differences in feeding rates among phenotypes. We conclude: 1) conspicuous figs are visually salient not only for trichromats but also for dichromats, 2) olfaction is important for evaluating edibility of cryptic figs, and 3) the reliance on olfaction for selecting fruit is greater in dichromats. These results indicate divergent foraging strategies among color vision phenotypes for assessing food items.

Keywords

capuchin color vision Ficus foraging polymorphism 

References

  1. Altmann, J. (1974). Observational study of behaviour: sampling methods. Behaviour, 49, 227–265.CrossRefPubMedGoogle Scholar
  2. Bergstrom, M. L. (2009). Dominance among female white-faced capuchins at Santa Rosa National Park, Costa Rica. M.A. Thesis, University of Calgary.Google Scholar
  3. Boissinot, S., Tan, Y., Shyue, S.-K., Schneider, H., Sampaio, I., Neiswanger, K., et al. (1998). Origins and antiquity of x-linked triallelic color vision systems in New World monkeys. Proceedings of the National Academy of Sciences, USA, 95, 13749–13754.CrossRefGoogle Scholar
  4. Caine, N. G., & Mundy, N. I. (2000). Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependant on food colour. Proceedings of the Royal Society of London Series B Biological Sciences, 267, 439–444.CrossRefGoogle Scholar
  5. Caine, N. G., Surridge, A. K., & Mundy, N. I. (2003). Dichromatic and trichromatic Geoffrey’s marmosets (Callithrix geoffrey) differ in relative foraging ability for red-green color-camouflaged and non-camouflaged food. International Journal of Primatology, 1163–1175.Google Scholar
  6. Chapman, C., & Fedigan, L. (1990). Dietary differences between neighbouring Cebus capucinus groups: Local traditions, food availability or responses to food profitability? Folia Primatologica, 54, 177–186.CrossRefGoogle Scholar
  7. Ciochon, R., & Fleagle, J., (Eds.) (1987). Primate evolution and human origins. Hawthorne, New York: Aldine de Gruyter. 395 p.Google Scholar
  8. Cropp, S., Boinski, S., & Li, W.-H. (2002). Allelic variation in the squirrel monkey x-linked color vision gene: biogeographical and behavioral correlates. Journal of Molecular Evolution, 54, 734–745.CrossRefPubMedGoogle Scholar
  9. Dominy, N. J. (2004a). Color as an indicator of food quality to anthropoid primates: Ecological evidence and an evolutionary scenario. In C. Ross & R. F. Kay (Eds.), Anthropoid origins: New visions. New York: Kluwer Academic.Google Scholar
  10. Dominy, N. J. (2004b). Fruits, fingers and fermentation: the sensory cues available to foraging primates. Integrative and Comparative Biology, 44, 295–303.CrossRefGoogle Scholar
  11. Dominy, N. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410(6826), 363–366.CrossRefPubMedGoogle Scholar
  12. Dominy, N. J., & Lucas, P. W. (2004). Significance of color, calories and climate to the visual ecology of catarrhines. American Journal of Primatology, 62(3), 189–207.CrossRefPubMedGoogle Scholar
  13. Dominy, N. J., Svenning, J.-C., & Li, W.-H. (2003). Historical contingency in the evolution of primate color vision. Journal of Human Evolution, 44, 25–45.CrossRefPubMedGoogle Scholar
  14. Dominy, N., Ross, C., & Smith, T. (2004). Evolution of the special senses in primates: past, present and future. Anatomical record, 281A, 1078–1082.CrossRefGoogle Scholar
  15. Dominy, N., Lucas, P. W., & Supardi, N. N. (2006). Primate sensory systems and foraging behavior. In G. Hohmann, M. Robbins & C. Boesch (Eds.), Feeding ecology in apes and other primates: Ecological, physiological and behavioural aspects (pp. 489–509). Cambridge: Cambridge University Press.Google Scholar
  16. Dudley, R. (2004). Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integrative and Comparative Biology, 44, 315–323.CrossRefGoogle Scholar
  17. Fedigan, L. M., Rose, L. M., & Morera, R. A. (1996). See how they grow. Track capuchin monkey populations in a regenerating Costa Rican dry forest. In M. A. Norconk, A. L. Rosenberger & P. Garber (Eds.), Adaptive radiations of neotropical primates (pp. 289–307). New York: Plenum Press.Google Scholar
  18. Fischer, K. E., & Chapman, C. A. (1993). Frugivores and fruit syndromes: differences in patterns at the genus and species level. Oikos, 66, 472–482.CrossRefGoogle Scholar
  19. Fragaszy, D., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin monkey. Cambridge, UK: Cambridge University Press.Google Scholar
  20. Gautier-Hion, A., Duplantier, J.-M., Quris, F. F., Sourd, C., Decoux, J.-P., Dubost, G., et al. (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337.CrossRefGoogle Scholar
  21. Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., & Paabo, S. (2007). Correction: loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology, 5, e148.CrossRefGoogle Scholar
  22. Go, Y., & Niimura, Y. (2008). Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Molecular Biology and Evolution, 25, 1897–1907.CrossRefPubMedGoogle Scholar
  23. Hiramatsu, C., Tsutsui, T., Matsumoto, Y., Aureli, F., Fedigan, L. M., & Kawamura, S. (2005). Color vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. American Journal of Primatology, 67(4), 447–461.CrossRefPubMedGoogle Scholar
  24. Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., Matsumoto, Y., et al. (2008). Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One, 3(10), 1–12.CrossRefGoogle Scholar
  25. Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., & Kawamura, S. (2009). Interplay of olfaction and vision in fruit foraging of spider monkeys. Animal Behaviour, 77, 1421–1426.CrossRefGoogle Scholar
  26. Jack, K. M., & Fedigan, L. M. (2006). Why be alpha male? Dominance and reproductive success in wild white-faced capuchins (Cebus capucinus). In A. Estrada, P. A. Garber, M. S. M. Pavelka & L. Luecke (Eds.), New perspectives in the study of mesoamerican primates. Chicago: Springer US.Google Scholar
  27. Jacobs, G. H. (1997). Color vision polymorphisms in New World monkeys: Implications for the evolution of primate trichromacy. In W. G. Kinzey (Ed.), New World primates: Ecology, evolution and behaviour (pp. 45–74). New York: Walter de Gruyter, Inc.Google Scholar
  28. Jacobs, G., & Blakeslee, B. (1984). Individual variation in color vision among squirrel monkeys (Samiri sciureus) of different geographical origins. Journal of Comparative Psychology, 98(4), 347–357.CrossRefPubMedGoogle Scholar
  29. Jacobs, G. H., & Deegan, I. J. F. (2003). Cone pigment variations in four genera of New World monkeys. Vision Research, 43, 227–236.CrossRefPubMedGoogle Scholar
  30. Jacobs, G., & Deegan, J. (2005). Polymorphic New World monkeys with more than three M/L cones. Journal of the Optical Society of America A, 22(10), 2072–2079.CrossRefGoogle Scholar
  31. Janson, C. (1983). Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science, 219, 187–189.CrossRefPubMedGoogle Scholar
  32. Janson, C. H. (1990). Ecological consequences of individual spatial choice in foraging groups of brown capuchin monkeys, Cebus apella. Animal Behaviour, 40, 922–934.CrossRefGoogle Scholar
  33. Janson, C. H., & Van Schaik, C. P. (1993). Ecological risk aversion in juvenile primates: Slow and steady wins the race. In M. E. Pereira & L. A. Fairbanks (Eds.), Juvenile primates life history, development and behavior (p. 428). New York: Oxford University Press.Google Scholar
  34. Janzen, D. H. (1979). How to be a fig. Annual Review of Ecology Systematics, 10, 13–51.CrossRefGoogle Scholar
  35. Kalko, E. K. V., Herre, E. A., & Handley, C. O., Jr. (1996). Relation of fig fruit characteristics to fruit-eating bats in the New and Old World tropics. Journal of Biogeography, 23(4), 565–576.CrossRefGoogle Scholar
  36. Knight, R. S., & Siegfried, W. R. (1983). Inter-relationships between type, size and colour of fruits and dispersal in southern African trees. Oecologia, 56, 405–412.CrossRefGoogle Scholar
  37. Koenig, A. (2000). Competitive regimes in forest-dwelling Hanuman langur females (Semnopithecus entellus). Behavioral ecology and sociobiology, 48, 93–109.CrossRefGoogle Scholar
  38. Laska, M. S., Seibt, A., & Weber, A. (2000). “Microsmatic” primates revisited: olfactory sensitivity in the squirrel monkey. Chemical Senses, 25, 47–53.CrossRefPubMedGoogle Scholar
  39. Lovell, P. G., Tolhurst, D. J., Parraga, C. A., Baddeley, R., Leonards, U., Troscianko, J., et al. (2005). Stability of the color-opponent signals under changes of illuminant in natural scenes. Journal of the Optical Society of America A, 22(10), 2060–2071.CrossRefGoogle Scholar
  40. Lucas, P. W., Darvelle, B. W., Lee, P. K. D., Yuen, T. D. B., & Choong, M. F. (1998). Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatologica, 69, 139–152.CrossRefGoogle Scholar
  41. Lucas, P. W., Dominy, N. J., Riba-Hernandez, P., Stoner, K., Yamashita, N., Loria-Calderon, E., et al. (2003). Evolution and function of routine trichromatic vision in primates. Evolution, 57(11), 2636–2643.PubMedGoogle Scholar
  42. Marshall, A., & Wrangham, R. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28(6), 1219–1235.CrossRefGoogle Scholar
  43. Melin, A., Fedigan, L., Hiramatsu, C., Sendall, C., & Kawamura, S. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Animal Behaviour, 73(1), 205–214.CrossRefGoogle Scholar
  44. Melin, A. D., Fedigan, L. M., Hiramatsu, C., & Kawamura, S. (2008). Polymorphic color vision in white-faced capuchins (Cebus capucinus): is there foraging niche divergence among phenotypes? Behavioral Ecology and Sociobiology, 62, 659–670.CrossRefGoogle Scholar
  45. Miller, L. (Ed.) (2002). Eat or be eaten. Cambridge: Cambridge University Press, 297 pp.Google Scholar
  46. Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew...” The uses and origins of primate color vision. Journal of Experimental Biology, 146, 21–38.PubMedGoogle Scholar
  47. Mollon, J. D., Bowmaker, J. K., & Jacobs, G. H. (1984). Variations of color vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London Series B: Biological Sciences, 222, 373–399.CrossRefGoogle Scholar
  48. Morgan, M. J., Adam, A., & Mollon, J. D. (1992). Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proceedings of the Royal Society of London Series B: Biological Sciences, 248, 291–295.CrossRefPubMedGoogle Scholar
  49. Morin, P. A., Chambers, K. E., Boesch, C., & Vigilant, L. (2001). Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Molecular Ecology, 10, 1835–1844.CrossRefPubMedGoogle Scholar
  50. Nei, M., Niimura, Y., & Nozawa, M. (2008). The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nature Reviews Genetics, 9, 951–963.CrossRefPubMedGoogle Scholar
  51. Osorio, D., & Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London Series B: Biological Sciences, 263, 593–599.CrossRefPubMedGoogle Scholar
  52. Osorio, D., Smith, A. C., Vorobyev, M., & Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164(6), 696–708.CrossRefGoogle Scholar
  53. Parr, N., Melin, A. D., & Fedigan, L. (2009). How fruiting fig trees affect the ranging behavior of wild white-faced capuchins (Cebus capucinus) in Santa Rosa National Park, Costa Rica. 32nd Meeting of the American Society of Primatologists San Diego, California.Google Scholar
  54. Parraga, C. A., Troscianko, T., & Tolhurst, D. J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology, 12, 483–487.CrossRefPubMedGoogle Scholar
  55. Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 356, 229–283.CrossRefGoogle Scholar
  56. Riba-Hernandez, P., Stoner, K. E., & Lucas, P. W. (2005). Sugar concentration of fruits and their detection via color in the Central American spider monkey. American Journal of Primatology, 67(4), 411–423.CrossRefPubMedGoogle Scholar
  57. Rose, L. M. (1994). Sex differences in diet and foraging behaviour in white-faced capuchins (Cebus capucinus). International Journal of Primatology, 15(1), 95–114.CrossRefGoogle Scholar
  58. Rowe, M. P., & Jacobs, G. H. (2004). Cone pigment polymorphism in New World Monkeys: are all pigments created equal? Visual Neuroscience, 21, 217–222.CrossRefPubMedGoogle Scholar
  59. Saito, A., Kawamura, S., Mikami, A., Ueno, Y., Hiramatsu, C., Koida, K., et al. (2005). Demonstration of genotype-phenotype correlation in polymorphic color vision of a non-callitricine New World monkey, capuchin Cebus apella. American Journal of Primatology, 67(4), 471–485.CrossRefPubMedGoogle Scholar
  60. Saito, C. (1996). Dominance and feeding success in female Japanese macaques, Macaca fuscata: effects of food patch size and interpatch distance. Animal Behaviour, 51, 967–980.CrossRefGoogle Scholar
  61. Smith, A. C., Buchanan-Smith, H. M., Surridge, A. K., Osorio, D., & Mundy, N. I. (2003). The effect of color vision on the detection and selection of fruits by tamarins (Saguinus spp.). Journal of Experimental Biology, 206, 3159–3165.CrossRefPubMedGoogle Scholar
  62. Sumner, P., & Mollon, J. D. (2000a). Catarrhine photopigments are optimized for detecting targets against a foliage background. Journal of Experimental Biology, 203, 1963–1986.PubMedGoogle Scholar
  63. Sumner, P., & Mollon, J. D. (2000b). Chromacy as a signal of ripeness in fruits taken by primates. Journal of Experimental Biology, 203, 1987–2000.PubMedGoogle Scholar
  64. Surridge, A. K., & Mundy, N. I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates. Molecular Ecology, 11, 2157–2169.CrossRefPubMedGoogle Scholar
  65. Surridge, A. K., Smith, A. C., Buchanan-Smith, H. M., & Mundy, N. I. (2002). Single-copy nuclear DNA sequences obtained from noninvasively collected primate feces. American Journal of Primatology, 56, 185–190.CrossRefPubMedGoogle Scholar
  66. Surridge, A. K., Osorio, D., & Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. Trends in Ecology & Evolution, 51, 198–205.CrossRefGoogle Scholar
  67. Tan, Y., & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature, 402, 36.CrossRefPubMedGoogle Scholar
  68. Terborgh, J. (1983). Five New World primates: A study in comparative ecology. Princeton, NJ: Princeton University Press.Google Scholar
  69. Veilleux, C., & Bolnick, D. (2008). Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. American Journal of Primatology, 70, 1–5.Google Scholar
  70. Vogel, E., Neitz, M., & Dominy, N. (2007). Effect of color vision phenotype in the foraging of white-faced capuchins, Cebus capucinus. Behavioral Ecology, 18, 292–297.CrossRefGoogle Scholar
  71. Vogel, E. R. (2005). Rank differences in energy intake rates in white-faced capuchin monkeys, Cebus capucinus: the effects of contest competition. Behavioral ecology and sociobiology, 58, 333–344.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amanda D. Melin
    • 1
  • Linda M. Fedigan
    • 1
  • Chihiro Hiramatsu
    • 2
    • 3
  • Tomohide Hiwatashi
    • 2
  • Nigel Parr
    • 1
  • Shoji Kawamura
    • 2
  1. 1.Department of AnthropologyUniversity of CalgaryCalgaryCanada
  2. 2.Department of Integrated Biosciences, Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
  3. 3.Division of Sensory and Cognitive InformationNational Institute for Physiological ScienceOkazakiJapan

Personalised recommendations