International Journal of Primatology

, Volume 30, Issue 5, pp 675–696

Nutritional Ecology of Ateles chamek in lowland Bolivia: How Macronutrient Balancing Influences Food Choices

  • Annika M. Felton
  • Adam Felton
  • Jeff T. Wood
  • William J. Foley
  • David Raubenheimer
  • Ian R. Wallis
  • David B. Lindenmayer


All free-living animals must make choices regarding which foods to eat, with the choices influencing their health and fitness. An important goal in nutritional ecology is therefore to understand what governs animals’ diet selection. Despite large variation in the availability of different food items, Peruvian spider monkeys (Ateles chamek) maintain a relatively stable daily protein intake, but allow total energy intake to vary as a function of the composition of available food items. This is referred to as protein-dominated macronutrient balancing. Here we assess the influence of this nutritional strategy on daily and seasonal nutritional intakes, estimate the nutritional value of different foods, and interpret unusual food choices. We conducted continuous all-day observations of focal spider monkeys inhabiting a semideciduous forest in Bolivia. We recorded feeding events, collected foods, and analyzed their nutrient content. By using the Geometric Framework for nutrition, we show that individuals reached their daily end-point in nutrient space —balance between protein and nonprotein energy intake— by consuming nutritionally balanced foods or by alternating between nutritionally complementary foods. The macronutritionally balanced figs of Ficus boliviana were their primary staple food and therefore dominated their overall nutritional intake. Our results also demonstrate that spider monkeys consumed a diverse array of ripe fruits to overcome periods of fig scarcity rather than vice versa; they could obtain sufficient protein on a diet of pure fruit; and unripe figs constituted a nutritionally rewarding and reliable food resource. We hope that the approaches taken and the conclusions reached in this study will catalyze further inquiries into the nutritional ecology of frugivorous primates.


Ficus macronutrients protein staple food unripe figs 


  1. Altmann, S. A. (1998). Foraging for survival. Chicago: University of Chicago Press.Google Scholar
  2. ANON. (1995). Standard practices for infrared multivariate quantitative analysis (designation E1655–00). West Conshohocken, PA.: American Society for Testing and Materials.Google Scholar
  3. Beehner, J. C., Onderdonk, D. A., Alberts, S. C., & Altmann, J. (2006). The ecology of conception and pregnancy failure in wild baboons. Behavioral Ecology, 17(5), 741–750.CrossRefGoogle Scholar
  4. Campbell, C. J. (2008). Spider monkeys: Behavior, ecology and evolution of the genus Ateles. Cambridge, UK: Cambridge University Press.Google Scholar
  5. Castellanos, H. G. (1995). Feeding behaviour of Ateles belzebuth E. Geoffroy 1806 (Cebidae: Atelinae) in Tawadu Forest Southern Venezuela. Ph.D dissertation, The University of Exeter, UK.Google Scholar
  6. Chambers, P. G., Simpson, S. J., & Raubenheimer, D. (1995). Behavioural mechanisms of nutrient balancing in Locusta migratoria nymphs. Animal Behaviour, 50, 1513–1523.CrossRefGoogle Scholar
  7. Chapman, C. A., & Russo, S. E. (2007). Primate seed dispersal: Linking behavioral ecology with forest community structure. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger & S. K. Bearder (Eds.), Primates in perspective (pp. 510–524). Oxford: Oxford University Press.Google Scholar
  8. Cipollini, M. L., & Levey, D. J. (1997a). Secondary metabolites of fleshy vertebrate-dispersed fruits: Adaptive hypotheses and implications for seed dispersal. American Naturalist, 150(3), 346–372.PubMedCrossRefGoogle Scholar
  9. Cipollini, M. L., & Levey, D. J. (1997b). Why are some fruits toxic? Glycoalkaloids in Solanum and fruit choice by vertebrates. Ecology, 78(3), 782–798.Google Scholar
  10. Conklin, N. L., & Wrangham, R. W. (1994). The value of figs to a hind-gut fermenting frugivore—a nutritional analysis. Biochemical Systematics and Ecology, 22(2), 137–151.CrossRefGoogle Scholar
  11. De Gabriel, J. L., Wallis, I. R., Moore, B. D., & Foley, W. J. (2008). A simple, integrative assay to quantify nutritional quality for browsing herbivores. Oecologia, 156(1), 107–116.CrossRefGoogle Scholar
  12. Dearing, M. D., Foley, W. J., & McLean, S. (2005). The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annual Review of Ecology Evolution and Systematics, 36, 169–189.CrossRefGoogle Scholar
  13. Dew, J. L. (2005). Foraging, food choice, and food processing by sympatric ripe-fruit specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth. International Journal of Primatology, 26(5), 1107–1135.CrossRefGoogle Scholar
  14. Di Fiore, A., & Rodman, P. S. (2001). Time allocation patterns of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in a neotropical terra firma forest. International Journal of Primatology, 22(3), 449–480.CrossRefGoogle Scholar
  15. Di Fiore, A., Link, A., & Dew, J. L. (2008). Diets of wild spider monkeys. In C. J. Campbell (Ed.), Spider monkeys: Behavior, ecology and evolution of the genus Ateles (pp. 81–137). Cambridge, UK: Cambridge University Press.Google Scholar
  16. Dufour, D. L. (1987). Insects as food—a case study from the Northwest Amazon. American Anthropologist, 89(2), 383–397.CrossRefGoogle Scholar
  17. Duhan, A., Chauhan, B. M., & Punia, D. (1992). Nutritional value of some nonconventional plant foods of India. Plant Foods for Human Nutrition, 42(3), 193–200.PubMedCrossRefGoogle Scholar
  18. Dunbar, R. I. M. (1988). Primate social systems. London and Sydney: Croom Helm Ltd.Google Scholar
  19. Felton, A. M., Felton, A., Wood, J. T., & Lindenmayer, D. B. (2008). Diet and feeding ecology of the Peruvian spider monkey (Ateles chamek) in a Bolivian semi-humid forest: the importance of Ficus as a staple food resource. International Journal of Primatology, 29, 379–403.CrossRefGoogle Scholar
  20. Felton, A. M., Felton, A., Lindenmayer, D. B., & Foley, W. J. (2009). Nutritional goals of wild primates. Functional Ecology, 23(1), 70–78.CrossRefGoogle Scholar
  21. Felton, A. M., Felton, A., Raubenheimer, D., Simpson, S. J., Foley, W. J., Wood, J. T., et al. (2009). Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology,. doi:10.1093/beheco/arp021.Google Scholar
  22. Foley, W. J., McIlwee, A., Lawler, I., Aragones, L., Woolnough, A. P., & Berding, N. (1998). Ecological applications of near infrared reflectance spectroscopy a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia, 116(3), 293–305.CrossRefGoogle Scholar
  23. Freeland, W. J., & Janzen, D. H. (1974). Strategies in herbivory by mammals - role of plant secondary compounds. American Naturalist, 108(961), 269–289.CrossRefGoogle Scholar
  24. Herbst, L. H. (1986). The role of nitrogen from fruit pulp in the nutrition of the frugivorous bat Carollia perspicillata. Biotropica, 18(1), 39–44.CrossRefGoogle Scholar
  25. Jordano, P. (1983). Fig-seed predation and dispersal by birds. Biotropica, 15(1), 38–41.CrossRefGoogle Scholar
  26. Kinnaird, M. F., & O’Brien, T. G. (2005). Fast foods of the forest: The influence of figs on primates and hornbills across Wallace’s line. In J. L. Dew & J. P. Bouble (Eds.), Tropical fruits and frugivores: The search for strong predictors (pp. 155–184).Google Scholar
  27. Kinzey, W. G. (1997). Ateles. In W. G. Kinzey (Ed.), New World primates: Ecology, evolution, and behavior (pp. 192–199). New York: Aldine de Gruyter.Google Scholar
  28. Lambert, J. E. (2007). Primate nutritional ecology: feeding biology and diet at ecological and evolutionary scales. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger & S. K. Bearder (Eds.), Primates in perspective (pp. 482–495). Oxford: Oxford University Press.Google Scholar
  29. Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119–161.CrossRefGoogle Scholar
  30. Milton, K. (1981). Food choice and digestive strategies of two sympatric primate species. American Naturalist, 117(4), 496–505.CrossRefGoogle Scholar
  31. Milton, K. (1982). Dietary quality and demographic regulation in a howler monkey population. In E. G. Leigh, A. S. Rand & D. M. Windsor (Eds.), The ecology of a tropical forest: Seasonal rhythms and long-term changes (pp. 273–289). Washington, DC: Smithsonian Institution Press.Google Scholar
  32. Milton, K. (1993). Diet and primate evolution (pp.86–93). Scientific American, Aug.Google Scholar
  33. Milton, K. (1998). Physiological ecology of howlers (Alouatta): Energetic and digestive considerations and comparison with the Colobinae. International Journal of Primatology, 19(3), 513–548.CrossRefGoogle Scholar
  34. Milton, K. (1999). A hypothesis to explain the role of meat-eating in human evolution. Evolutionary Anthropology, 8(1), 11–21.CrossRefGoogle Scholar
  35. Milton, K., & Dintzis, F. R. (1981). Nitrogen-to-protein conversion factors for tropical plant-samples. Biotropica, 13(3), 177–181.CrossRefGoogle Scholar
  36. Milton, K., Windsor, D. M., Morrison, D. W., & Estribi, M. A. (1982). Fruiting phenologies of two Neotropical Ficus species. Ecology, 63(3), 752–762.CrossRefGoogle Scholar
  37. Norconk, M. A., Grafton, B. W., & Conklin-Brittain, N. L. (1998). Seed dispersal by Neotropical seed predators. American Journal of Primatology, 45(1), 103–126.PubMedCrossRefGoogle Scholar
  38. Oates, J. F. (1987). Food distribution and foraging behavior. In B. B. Smuts, D. L. Cheyney, R. M. Seyfarth, R. W. Wrangham & T. T. Struhsaker (Eds.), Primate Societies (pp. 197–209). Chicago: University of Chicago Press.Google Scholar
  39. O’Brien, T. G., Kinnaird, M., & Dierenfeld, E. S. (1998). What’s so special about figs? Nature, 392, 668.CrossRefGoogle Scholar
  40. Oftedal, O. T. (1991). The nutritional consequences of foraging in primates—the relationship of nutrient intakes to nutrient-requirements. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 334(1270), 161–170.PubMedCrossRefGoogle Scholar
  41. Peres, C. A. (1994). Diet and feeding ecology of gray woolly monkeys (Lagothrix lagotricha cana) in Central Amazonia—comparisons with other atelines. International Journal of Primatology, 15(3), 333–372.CrossRefGoogle Scholar
  42. Raubenheimer, D., & Simpson, S. J. (1997). Integrative models of nutrient balancing: Application to insects and vertebrates. Nutrition Research Reviews, 10, 151–179.PubMedCrossRefGoogle Scholar
  43. Raubenheimer, D., & Simpson, S. J. (2004). Organismal stoichiometry: quantifying non-independence among food components. Ecology, 85(5), 1203–1216.CrossRefGoogle Scholar
  44. Raubenheimer, D., & Simpson, S. J. (2006). The challenge of supplementary feeding: can geometric analysis help save the kakapo? Notornis, 53, 100–111.Google Scholar
  45. Robbins, C. T. (1993). WIldlife feeding and nutrition (2nd edition ed.): Academic Press.Google Scholar
  46. Robbins, C. T., Fortin, J. K., Rode, K. D., Farley, S. D., Shipley, L. A., & Felicetti, L. A. (2007). Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos, 116(10), 1675–1682.CrossRefGoogle Scholar
  47. Rosenberger, A. L., & Strier, K. B. (1989). Adaptive radiation of the ateline primates. Journal of Human Evolution, 18(7), 717–750.CrossRefGoogle Scholar
  48. Ruby, J., Nathan, P. T., Balasingh, J., & Kunz, T. H. (2000). Chemical composition of fruits and leaves eaten by short-nosed fruit bat, Cynopterus sphinx. Journal of Chemical Ecology, 26(12), 2825–2841.CrossRefGoogle Scholar
  49. Ruohonen, K., Simpson, S. J., & Raubenheimer, D. (2007). A new approach to diet optimisation: A re-analysis using European whitefish (Coregonus lavaretus). Aquaculture, 267(1–4), 147–156.CrossRefGoogle Scholar
  50. Schaefer, H. M., & Schaefer, V. (2006). The fruits of selectivity: How birds forage on Goupia glabra fruits of different ripeness. Journal of Ornithology, 147(4), 638–643.CrossRefGoogle Scholar
  51. Schaefer, H. M., Schmidt, V., & Winkler, H. (2003). Testing the defense trade-off hypothesis: How contents of nutrients and secondary compounds affect fruit removal. Oikos, 102(2), 318–328.CrossRefGoogle Scholar
  52. Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 369–404.CrossRefGoogle Scholar
  53. Shanahan, M., So, S., Compton, S. G., & Corlett, R. (2001). Fig-eating by vertebrate frugivores: A global review. Biological Reviews, 76(4), 529–572.PubMedGoogle Scholar
  54. Silver, S. C., Ostro, L. E. T., Yeager, C. P., & Dierenfeld, E. S. (2000). Phytochemical and mineral components of foods consumed by black howler monkeys (Alouatta pigra) at two sites in Belize. Zoo Biology, 19(2), 95–109.CrossRefGoogle Scholar
  55. Simpson, S. J., & Raubenheimer, D. (1993). A multilevel analysis of feeding behavior - the geometry of nutritional decisions. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 342(1302), 381–402.CrossRefGoogle Scholar
  56. Simpson, S. J., & Raubenheimer, D. (1995). The geometric analysis of feeding and nutrition—a user’s guide. Journal of Insect Physiology, 41(7), 545–553.CrossRefGoogle Scholar
  57. Simpson, S. J., & Raubenheimer, D. (2001). The geometric analysis of nutrient-allelochemical interactions: a case study using locusts. Ecology, 82(2), 422–439.Google Scholar
  58. Simpson, S. J., & Raubenheimer, D. (2005). Obesity: the protein leverage hypothesis. Obesity Reviews, 6(2), 133–142.PubMedCrossRefGoogle Scholar
  59. Stevenson, P. (2005). Potential keystone plant species for the frugivore community at Tinigua Park, Colombia. In J. L. Dew & J. P. Bouble (Eds.), Tropical fruits and frugivores: The Search for Strong Predictors (pp. 37–57): Springer.Google Scholar
  60. Strier, K. B. (1992). Atelinae adaptations—behavioral strategies and ecological constraints. American Journal of Physical Anthropology, 88(4), 515–524.PubMedCrossRefGoogle Scholar
  61. Strier, K. B. (2007). Primate behavioral ecology (3rd ed.). Columbus, OH: Allyn & Bacon.Google Scholar
  62. Venu, D. K., Munjal, S. V., Waskar, D. P., Patil, S. R., & Kale, A. A. (2005). Biochemical changes during growth and development of fig (Ficus carica L.) fruits. Journal of Food Science and Technology-Mysore, 42(3), 279–282.Google Scholar
  63. Wallace, R. B. (2005). Seasonal variations in diet and foraging behavior of Ateles chamek in a southern Amazonian tropical forest. International Journal of Primatology, 26(5), 1053–1075.CrossRefGoogle Scholar
  64. Wendeln, M. C., Runkle, J. R., & Kalko, E. K. V. (2000). Nutritional values of 14 fig species and bat feeding preferences in Panama. Biotropica, 32(3), 489–501.Google Scholar
  65. White, T. C. R. (1993). The inadequate environment: Nitrogen and the abundance of animals. Berlin/Heidelberg/New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Annika M. Felton
    • 1
    • 2
  • Adam Felton
    • 1
  • Jeff T. Wood
    • 1
  • William J. Foley
    • 3
  • David Raubenheimer
    • 4
    • 5
  • Ian R. Wallis
    • 3
  • David B. Lindenmayer
    • 1
  1. 1.Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralia
  2. 2.Instituto Boliviano de Investigación Forestal (IBIF)Santa Cruz de la SierraBolivia
  3. 3.Department of Botany and ZoologyThe Australian National UniversityCanberraAustralia
  4. 4.Institute of Natural SciencesMassey UniversityAucklandNew Zealand
  5. 5.New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand

Personalised recommendations